Skip to main content

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 1))

Abstract

Streptomyces is a genus of gram-positive bacteria with a mycelial growth habit and the ability to produce spores. Due to their unparalleled ability to produce antibiotics, most of the early research carried out on Streptomyces was antibiotic discovery-driven, with over two thirds of antibiotics used for medical purposes originally isolated from Streptomyces. However, their ubiquity, high capacity of adaptation to different niches and rich secondary metabolite production, make them an invaluable source of solutions in diverse human activities, including medicine, agriculture, industry and toxic waste remotion. In addition to the ability to culture and produce Streptomyces and Streptomyces-derived metabolites, knowledge on how to manipulate natural populations of Streptomyces will likely improve our ability to make environmentally sustainable decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184(3):529–544

    Article  CAS  PubMed  Google Scholar 

  • Alam MT, Merlo ME, Hodgson DA, Wellington EMH, Takano E, Breitling R (2010) Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11:1–9

    Article  CAS  Google Scholar 

  • Altier N, Zerbino MS (2012) Soil microbial communities and pathogen potential in no-till crop-pasture rotations under direct grazing. International Soil Tillage Research Organization 19; Sociedad Uruguaya de Ciencias del Suelo, 4; Montevideo, UY. Poster presentation: 112

    Google Scholar 

  • Alvarez A, Benimeli CS, Saez JM, Giuliano A, Amoroso MJ (2005) Lindane removal using Streptomyces strains and maize plants: a biological system for reducing pesticides in soils. Plant Soil 395:401–413

    Article  CAS  Google Scholar 

  • Anderson AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814

    Article  CAS  PubMed  Google Scholar 

  • Anzai K, Ohno M, Nakashima T, Kuwahara N, Suzuki R, Tamura T, Komaki H, Miyadoh S, Harayama S, Ando K (2008) Taxonomic distribution of Streptomyces species capable of producing bioactive compounds among strains preserved at NITE/NBRC. Appl Microbiol Biotechnol 80(2):287–95

    Article  CAS  PubMed  Google Scholar 

  • Audrain B, Létoffé S, Ghigo J-M (2015) Airborne bacterial interactions: functions out of thin air? Front Microbiol 6:1–5

    Article  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores: a study with 7-nitrobenz-2 oxa-1,3-diazole-desferrioxamine as fluorescent ferrioxamine B analog. Plant Physiol 99:1329–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol 144(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Bakker MG, Glover JD, Mai JG, Kinkel LL (2010) Plant community effects on the diversity and pathogen suppressive activity of soil streptomycetes. Appl Soil Ecol 46(1):35–42

    Article  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360(1–2):1–13

    Article  CAS  Google Scholar 

  • Bakker MG, Bradeen JM, Kinkel LL (2013) Effects of plant host species and plant community richness on streptomycete community structure. FEMS Microbiol Ecol 83(3):596–606

    Article  CAS  PubMed  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int Biodeterior Biodegrad 61(3):233–239

    Article  CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in Streptomycetes. Curr Opin Microbiol 8(2):208–215

    Article  CAS  PubMed  Google Scholar 

  • Book AJ, Lewin GR, McDonald BR, Takasuka TE, Doering DT, Adams AS, Blodgett JAV, Clardy J, Raffa KF, Fox BG, Currie CR (2014) Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity To degrade lignocellulose. Appl Environ Microbiol 80(15):4692–4701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science (New York, NY) 311(5764):1113–1116

    Article  CAS  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247(2):147–152

    Article  CAS  PubMed  Google Scholar 

  • Chandler JR, Heilmann S, Mittler JE, Greenberg EP (2012) Acyl-homoserine lactone-dependent eavesdropping promotes competition in a laboratory co-culture model. ISME J 6(12):2219–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48(5):489–499

    Article  Google Scholar 

  • Chater KF, Chandra G (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30(5):651–672

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34(2):171–98

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary P, Sharma R, Singh SB, Nain L (2011) Bioremediation of PAH by Streptomyces sp. Bull Environ Contam Toxicol 86(3):268–271

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Geng P, Xiao Y, Hu M (2012) Bioremediation of ß-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl Microbiol Biotechnol 94(2):505–515

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang B, Zhang W, Wu X, Zhang M, Chen T, Liu G, Dyson P (2013) Genome sequence of Streptomyces violaceusniger strain SPC6, a halotolerant streptomycete that exhibits rapid growth and development. Genome Announc 1(4):e00494–13

    PubMed  PubMed Central  Google Scholar 

  • Chung YR, Son DY, Mo HK, Son DY, Nam JS, Chun J, Bae KS (1999) Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int J Syst Bacteriol 49:753–758

    Article  PubMed  Google Scholar 

  • Colin VL, Juárez Cortes AA, Aparicio JD, Amoroso MJ (2016) Potential application of a bioemulsifier-producing actinobacterium for treatment of vinasse. Chemosphere 144:842–847

    Article  CAS  PubMed  Google Scholar 

  • Conn VM, Walker AR, Franco CMM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(2):208–218

    Article  CAS  PubMed  Google Scholar 

  • Corre C, Song L, O’Rourke S, Chater KF, Challis GL (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci U S A 105(45):17510–17515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corre C, Haynes SW, Malet N, Song L, Challis GL (2010) A butenolide intermediate in methylenomycin furan biosynthesis is implied by incorporation of stereospecifically 13C-labelled glycerols. Chem Commun 46(23):4079–4081

    Article  CAS  Google Scholar 

  • Crowley DE, Reid CP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87(3):680–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cugudda L, Garibaldi A (1981) Soil suppressive to Fusarium wilt of carnation: studies on mechanism of suppressiveness. Acta Hortic 216:67–76

    Google Scholar 

  • Cuozzo SA, Fuentes MS, Bourguignon N, Benimeli CS, Amoroso MJ (2012) Chlordane biodegradation under aerobic conditions by indigenous Streptomyces strains. Int Biodeterior Biodegrad 66(1):19–24

    Article  CAS  Google Scholar 

  • Davelos AL, Xiao K, Samac DA, Martin AP, Kinkel LL (2004) Spatial variation in Streptomyces genetic composition and diversity in a prairie soil. Microb Ecol 48(4):601–612

    Article  CAS  PubMed  Google Scholar 

  • Davis JR, Goodwin L, Teshima H, Detter C, Tapia R, Han C, Huntemann M, Wei C-L, Han J, Chen A, Kyrpides N, Mavrommatis K, Szeto E, Markowitz V, Ivanova N, Mikhailova N, Ovchinnikova G, Pagani I, Pati A, Woyke T, Pitluck S, Peters L, Nolan M, Land M, Sello JK (2013) Genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a lignin-degrading actinomycete. Genome Announc 1(4):e00416–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng M-R, Guo J, Ma L-Y, Li Y-X, Feng G-D, Mo C-Y, Zhu H-H (2015) Complete genome sequence of Streptomyces vietnamensis GIMV4.0001(T), a genetically manipulable producer of the benzoisochromanequinone antibiotic granaticin. J Biotechnol 200:6–7

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50(5):1477–1491

    Article  CAS  PubMed  Google Scholar 

  • Dunne EF, Burman WJ, Wilson ML (1998) Streptomyces pneumonia in a patient with human immunodeficiency virus infection: case report and review of the literature on invasive Streptomyces infections. Clin Infect Dis 27:93e96

    Article  Google Scholar 

  • Egan S, Wiener P, Kallifidas D, Wellington EMH (2001) Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters. Antonie Van Leeuwenhoek 79(2):127–133

    Article  CAS  PubMed  Google Scholar 

  • Egland PG, Robert JP, Kolenbrander PE (2004) Interspecies communication in Streptococcus gordoniiVeillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci U S A 101(48):16917–16922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106(1):13–26

    Article  CAS  PubMed  Google Scholar 

  • Fischbach MA (2009) Antibiotics from microbes: converging to kill. Curr Opin Microbiol 12:520–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7(1):36–49

    Article  PubMed  CAS  Google Scholar 

  • Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE (2015) Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol Biochem 88:137–147

    Article  CAS  Google Scholar 

  • Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading Actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeterior Biodegrad 64(6):434–441

    Article  CAS  Google Scholar 

  • Funa N, Funabashi M, Ohnishi Y, Horinouchi S (2005) Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus. J Bacteriol 187(23):8149–8155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangwar M, Dogra S, Phutela Gupta U, Nath Kharwar R (2014) Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. Afr J Microbiol Res 8(2):184–191

    Article  CAS  Google Scholar 

  • Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristics of the phylum Actinobacteria. Int J Syst Evol Microbiol 55(6):2401–2412

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Gupta R (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76(1):66–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42(29):243–270

    Article  CAS  PubMed  Google Scholar 

  • Girard G, Traag BA, Sangal V, Mascini N, Hoskisson PA, Goodfellow M, van Wezel GP (2013) A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open Biol 3:130073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez-Escribano JP, Castro JF, Razmilic V, Chandra G, Andrews B, Asenjo JA, Bibb MJ (2015) The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics 16(1):485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Kudapa H, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169(1):40–48

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, Varshney RK (2015) The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. SpringerPlus 4:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groth I, Rodriguez C, Schütze B, Schmitz P, Leistner E, Goodfellow M (2004) Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp., nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 54(6):2121–2129

    Article  CAS  PubMed  Google Scholar 

  • Guiñazú LB, Andrés JA, Del Papa MF, Pistorio M, Rosas SB (2009) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46(2):185–190

    Article  Google Scholar 

  • Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58(1):149–159

    Article  CAS  PubMed  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci U S A 106(12):4742–4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA, Schroeder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:1–4

    Article  CAS  Google Scholar 

  • Hiltunen LH, Weckman A, Ylhäinen A, Rita H, Richter E, Valkonen JPT (2005) Responses of potato cultivars to the common scab pathogens, Streptomyces scabies and S. turgidiscabies. Ann Appl Biol 146:395–403

    Article  Google Scholar 

  • Hiltunen LH, Ojanperä T, Kortemaa H, Richter E, Lehtonen MJ, Valkonen JPT (2009) Interactions and biocontrol of pathogenic Streptomyces strains co-occurring in potato scab lesions. J Appl Microbiol 106(1):199–212

    Article  CAS  PubMed  Google Scholar 

  • Hoagland L, Carpenter-Boggs L, Reganold JP, Mazzola M (2008) Role of native soil biology in Brassicaceous seed meal-induced weed suppression. Soil Biol Biochem 40(7):1689–1697

    Article  CAS  Google Scholar 

  • Hsiao N-H, Kirby R (2007) Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system. Antonie Van Leeuwenhoek 93(1–2):1–25

    PubMed  PubMed Central  Google Scholar 

  • Hsiao NH, Söding J, Linke D, Lange C, Hertweck C, Wohlleben W, Takano E (2007) ScbA from Streptomyces coelicolor A3(2) has homology to fatty acid synthases and is able to synthesize gamma-butyrolactones. Microbiology 153(5):1394–404

    Article  CAS  PubMed  Google Scholar 

  • Hulcr J, Adams AS, Raffa K, Hofstetter RW, Klepzig KD, Currie CR (2011) Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America. Microb Ecol 61:759e768

    Article  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21(5):526–531

    Article  PubMed  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17(12):529–535

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth M, Engl T (2014) Defensive microbial symbionts in Hymenoptera. Funct Ecol 28(2):315–327

    Article  Google Scholar 

  • Kanini GS, Katsifas EA, Savvides AL, Karagouni AD (2013) Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f.sp. lycopersici. BioMed Res Int 2013:387230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karray F, Darbon E, Oestreicher N, Tuphile K, Gagnat J (2007) Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin inStreptomyces ambofaciens. Microbiology 153:4111–4122

    Article  CAS  PubMed  Google Scholar 

  • Kato J-Y, Funa N, Watanabe H, Ohnishi Y, Horinouchi S (2007) Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci U S A 104(7):2378–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4(4):249–258

    Article  CAS  PubMed  Google Scholar 

  • Khan ST, Komaki H, Motohashi K, Kozone I, Mukai A, Takagi M, Shin-Ya K (2011) Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products. Environ Microbiol 13(2):391–403

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, John Innes Foundation (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Kim B-J, Kim C-J, Chun J, Koh Y-H, Lee S-H, Hyun J-W, Cha C-Y, Kook Y-H (2004) Phylogenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase -subunit gene (rpoB) sequences. Int J Syst Evol Microbiol 54(2):593–598

    Article  CAS  PubMed  Google Scholar 

  • Kim TU, Cho SH, Han JH, Shin YM, Lee HB, Kim SB (2012) Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea. J Microbiol 50(1):50–57

    Article  CAS  PubMed  Google Scholar 

  • Kinkel LL, Schlatter DC, Bakker MG, Arenz BE (2012) Streptomyces competition and co-evolution in relation to plant disease suppression. Res Microbiol 163(8):490–499

    Article  PubMed  Google Scholar 

  • Kirby R, Sangal V, Tucker NP, Zakrzewska-Czerwinska J, Wierzbicka K, Herron PR, Chu C-J, Chandra AG, Fahal DAH, Goodfellow EM, Hoskisson PA (2012) Draft genome sequence of the human pathogen Streptomyces somaliensis, a significant cause of Actinomycetoma. J Bacteriol 194(13):3544–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchman DL (2012) Processes in microbial ecology. Oxford University Press, Oxford

    Google Scholar 

  • Kobayashi YO, Kobayashi A, Maeda M, Someya N, Takenaka S (2015) Biological control of potato scab and antibiosis by antagonistic Streptomyces sp. WoRs-501. J Gen Plant Pathol 81(6):439–448

    Article  CAS  Google Scholar 

  • Köberl M, Ramadan EM, Adam M, Cardinale M, Hallmann J, Heuer H, Smalla K, Berg G (2013) Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett 342(2):168–178

    Article  PubMed  CAS  Google Scholar 

  • Kothe E, Dimkpa C, Haferburg G, Schmidt A, Schmidt A, Schütze E (2010) Streptomycete heavy metal resistance: extracellular and Intracellular mechanisms. In: Soil heavy metals, vol 19, pp 225–235

    Google Scholar 

  • Kun XC, Jun LX, Qin XJ, Lei G, Qun DC, He MM, Qin ZK, Xiang YF, Huang FD (2011) Phylogenetic analysis of the nematicidal actinobacteria from agricultural soil of China. Afr J Microbiol Res 5(16):2316–2324

    Google Scholar 

  • Kurth F, Mailänder S, Bönn M, Feldhahn L, Herrmann S, Große I, Buscot F, Schrey SD, Tarkka MT (2014) Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways. Mol Plant-Microbe Interact 27(9):891–900

    Article  CAS  PubMed  Google Scholar 

  • Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marecková M, Grundmann GL, Moënne-Loccoz Y (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3(10):1127–1138

    Article  PubMed  Google Scholar 

  • Landa BB, Mavrodi OV, Raaijmakers JM, Mcspadden Gardener BB, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol 68(7):3226–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin RP (2015) Soil health paradigms and implications for disease management. Annu Rev Phytopathol 53(1):199–221

    Article  CAS  PubMed  Google Scholar 

  • Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci U S A 108(15):6258–6263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1(5):265–269

    Article  CAS  PubMed  Google Scholar 

  • Lebeis SL (2015) Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol 24:82–86

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Tindwa H, Lee YS, Naing KW, Hong SH, Nam Y, Kim KY (2012) Biocontrol of anthracnose in pepper using chitinase. J Microbiol Biotechnol 22(10):1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ning P, Zheng L, Huang J, Li G, Hsiang T (2012) Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control 61(2):113–120

    Article  CAS  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103(51):19484–19489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Anderson NA, Kinkel LL (1995) Biological control of potato scab in the field with antagonistic Streptomyces scabies. Phytopathology 85(7):827–831

    Article  Google Scholar 

  • Loria R, Kers J, Joshi M (2006) Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44(1):469–487

    Article  CAS  PubMed  Google Scholar 

  • Maldonado LA, Stach JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie Van Leeuwenhoek 87(1):11–18

    Article  PubMed  Google Scholar 

  • Mamta RP, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R (2010) Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Appl Soil Ecol 46(2):222–229

    Article  Google Scholar 

  • Manteca A, Pelaez AI, Zardoya R, Sanchez J (2006) Actinobacteria cyclophilins: phylogenetic relationships and description of new class- and order-specific paralogues. J Mol Evol 63(6):719–732

    Article  CAS  PubMed  Google Scholar 

  • Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science (New York, NY) 321(5887):365–367

    Article  CAS  Google Scholar 

  • Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39(3):213–220

    PubMed  PubMed Central  Google Scholar 

  • Mazzola M, Granatstein DM, Elfving DC, Mullinix K, Gu YH (2002) Cultural management of microbial community structure to enhance growth of apple in replant soils. Phytopathology 92(12):1363–6

    Article  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAH, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Micallef SA, Shiaris MP, Colón-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60(6):1729–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millard WA, Taylor CB (1927) Antagonism of micro-organisms as the controlling factor in the inhibition of scab by green-manuring. Ann Appl Biol 14:202e216

    Google Scholar 

  • Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. BioControl 56(5):811–822

    Article  Google Scholar 

  • Morin JB, Adams KL, Sello JK (2012) Replication of biosynthetic reactions enables efficient synthesis of A-factor, a γ-butyrolactone autoinducer from Streptomyces griseus. Org Biomol Chem 10(8):1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Murakami H, Tsushima S, Shishido Y (2000) Soil suppressiveness to clubroot disease of Chinese cabbage caused by Plasmodiophora brassicae. Soil Biol Biochem 32(11–12):1637–1642

    Article  CAS  Google Scholar 

  • Myronovskyi M, Tokovenko B, Manderscheid N, Petzke L, Luzhetskyy A (2013) Complete genome sequence of Streptomyces fulvissimus. J Biotechnol 168(1):117–118

    Article  CAS  PubMed  Google Scholar 

  • Nanthini J, Chia K-H, Thottathil GP, Taylor TD, Kondo S, Najimudin N, Baybayane P, Singh S, Sudesh K (2015) Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia. J Biotechnol 214:47–48

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Ohnishi Y, Beppu T, Horinouchi S (2007) Evolution of gamma-butyrolactone synthases and receptors in Streptomyces. Environ Microbiol 9(8):1986–1994

    Article  CAS  PubMed  Google Scholar 

  • Noumavo PA, Agbodjato Nadege A, Gachomo EW, Salami HA, Baba-Moussa F, Adjanohoun A, Kotchoni SO, Baba-Moussa L (2015) Metabolic and biofungicidal properties of maize rhizobacteria for growth promotion and plant disease resistance. Afr J Biotechnol 14(9):811–819

    Article  CAS  Google Scholar 

  • Núñez LE, Méndez C, Braña AF, Blanco G, Salas JA (2003) The biosynthetic gene cluster for the beta-lactam carbapenem thienamycin in Streptomyces cattleya. Chem Biol 10:301–311

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke S, Wietzorrek A, Fowler K, Corre C, Challis GL, Chater KF (2009) Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor. Mol Microbiol 71(3):763–778

    Article  PubMed  CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimaraes CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41(9):1782–1787

    Article  CAS  Google Scholar 

  • Ortseifen V, Winkler A, Albersmeier A, Wendler S, Pühler A, Kalinowski J, Rückert C (2015) Complete genome sequence of the actinobacterium Streptomyces glaucescens GLA.O (DSM 40922) consisting of a linear chromosome and one linear plasmid. J Biotechnol 194:81–83

    Article  CAS  PubMed  Google Scholar 

  • Palaniyandi SA, Yang SH, Damodharan K, Suh JW (2013a) Genetic and functional characterization of culturable plant-beneficial actinobacteria associated with yam rhizosphere. J Basic Microbiol 53:985–995

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh J-W (2013b) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97(22):9621–9636

    Article  CAS  PubMed  Google Scholar 

  • Palaniyandi SA, Yang SH, Suh JW (2013c) Extracellular proteases from Streptomyces phaeopurpureus ExPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes. J Appl Microbiol 115(1):207–217

    Article  CAS  PubMed  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of “Micro Tom” tomato plants. J Appl Microbiol 117:766–773

    Article  CAS  PubMed  Google Scholar 

  • Pathom-Aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10(3):181–189

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52(1):347–375

    Article  CAS  PubMed  Google Scholar 

  • Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr(VI) and lindane in soil by Actinobacteria. Int Biodeter Biodegrad 88:48–55

    Article  CAS  Google Scholar 

  • Pulsawat N, Kitani S, Nihira T (2007) Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae. Gene 393:31–42

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Xing K, Jiang J-H, Xu L-H, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89(3):457–473

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Miao Q, Feng W-W, Wang Y, Zhu X, Xing K, Jiang J-H (2015) Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Appl Soil Ecol 93:47–55

    Article  Google Scholar 

  • Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47(6):486–491

    Article  CAS  PubMed  Google Scholar 

  • Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272(42):26627–26633

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156(3):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287(1–2):15–21

    Article  CAS  Google Scholar 

  • Rong X, Guo Y, Huang Y (2009) Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA-DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst Appl Microbiol 32(5):314–322

    Article  CAS  PubMed  Google Scholar 

  • Ruanpanun P, Chamswarng C (2016) Potential of actinomycetes isolated from earthworm castings in controlling root-knot nematode Meloidogyne incognita. J Gen Plant Pathol 82(1):43–50

    Article  CAS  Google Scholar 

  • Ruanpanun P, Laatsch H, Tangchitsomkid N, Lumyong S (2011) Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J Microbiol Biotechnol 27(6):1373–1380

    Article  CAS  PubMed  Google Scholar 

  • Rückert C, Szczepanowski R, Albersmeier A, Goesmann A, Iftime D, Musiol EM, Blind K, Wohllebend W, Pühlerb A, Kalinowskia J, Weber T (2013) Complete genome sequence of the kirromycin producer Streptomyces collinus Tü 365 consisting of a linear chromosome and two linear plasmids. J Biotechnol 168(4):739–740

    Article  PubMed  CAS  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie van Leeuwenhoek Int 102(3):463–472

    Article  CAS  Google Scholar 

  • Saez JM, Benimeli CM, Amoroso MJ (2012) Lindane removal by pure and mixed cultures of immobilized Actinobacteria. Chemosphere 89(8):982–987

    Article  CAS  PubMed  Google Scholar 

  • Sanford GB (1926) Some factors affecting the pathogenicity of Actinomyces scabies. Phytopathology 16:525e547

    Google Scholar 

  • Sathya Priya B, Stalin T, Selvam K (2014) Ecosafe bioremediation of dairy industry effluent using Streptomyces indiaensis ACT 7 and Streptomyces hygroscopicus ACT 14 and application for seed germination of Vigna radiata. Afr J Microbiol Res 8(23):2286–2289

    Article  CAS  Google Scholar 

  • Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb Ecol 57(3):413–420

    Article  PubMed  Google Scholar 

  • Schlatter DC, Davelos-Baines AL, Xiao K, Kinkel LL (2013) Resource use of soilborne Streptomyces varies with location, phylogeny, and nitrogen amendment. Microb Ecol 66(4):961–971

    Article  PubMed  Google Scholar 

  • Schlatter DC, Kinkel LL (2014) Global biogeography of Streptomyces antibiotic inhibition, resistance, and resource use. FEMS Microbiol Ecol 88(2):386–397

    Article  CAS  PubMed  Google Scholar 

  • Schütze E, Kothe E (2012) Heavy metal-resistant Streptomyces in soil. In: Bio-Geo interactions in metal-contaminated soils. Springer, Berlin/New York, pp 163–182

    Google Scholar 

  • Schütze E, Klose M, Merten D, Nietzsche S, Senftleben D, Roth M, Kothe E (2014) Growth of streptomycetes in soil and their impact on bioremediation. J Hazard Mater 267:128–135

    Article  PubMed  CAS  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36(4):862–876

    Article  CAS  PubMed  Google Scholar 

  • Sello JK, Buttner MJ (2008) The gene encoding RNase III in Streptomyces coelicolor is transcribed during exponential phase and is required for antibiotic production and for proper sporulation. J Bacteriol 190(11):4079–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid M, Hameed S, Imran A, Ali S, van Elsas JD (2012) Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World J Microbiol Biotechnol 28(8):2749–2758

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Xu Z, Zhang N, Shen Q, Zhang R (2014) Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Fertil Soils 51(3):321–330

    Article  CAS  Google Scholar 

  • Shekhar N, Bhattacharya D, Kumar D, Gupta RK (2006) Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2. Can J Microbiol 52(9):805–808

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Meguro A, Hasegawa S, Nishimura T, Kunoh H (2006) Disease resistance induced by nonantagonistic endophytic Streptomyces spp. on tissue-cultured seedlings of rhododendron. J Gen Plant Pathol 72(6):351–354

    Article  Google Scholar 

  • Shimizu M, Yazawa S, Ushijima Y (2009) A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. J Gen Plant Pathol 75(1):27–36

    Article  Google Scholar 

  • Singh AK, Chhatpar HS (2011) Purification, characterization and thermodynamics of antifungal protease from Streptomyces sp. A6. J Basic Microbiol 51(4):424–32

    Article  CAS  PubMed  Google Scholar 

  • Smith DL, Subramanian S, Lamont JR (2015) Signaling in the phytomicrobiome: breadth and potential. Front Plant Sci 6:1–8

    CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Takano E (2006) γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9(3):287–294

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Sawada H, Tanaka F, Matsuda I (1996) Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int J Syst Bacteriol 46(2):476–479

    Article  CAS  PubMed  Google Scholar 

  • Tarkka MT, Feldhahn L, Buscot F, Wubet T (2015) Genome sequence of the mycorrhiza helper bacterium Streptomyces. Genome Annouc 3(2):10–11

    Google Scholar 

  • Thibessard A, Haas D, Gerbaud C, Aigle B, Lautru S, Pernodet J-L, Leblond P (2015) Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer. J Biotechnol 214:117–118

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Yang J, Li L, Ruan L, Wei W, Zheng G, Zhaoa W, Chen J, Jiang W, Ge M, Lu Y (2015) The complete genome sequence of a high pristinamycin-producing strain Streptomyces pristinaespiralis HCCB10218. J Biotechnol 214:45–46

    Article  CAS  PubMed  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Brzezinski R, Beaulieu C, De C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62(5):1630–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15(1):13–24

    Article  Google Scholar 

  • van Gestel K, Mergaert J, Swings J, Coosemans J, Ryckeboer J (2003) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125(3):361–368

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vaz Jauri P, Bakker MG, Salomon CE, Kinkel LL (2013) Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil Streptomyces. PLoS ONE 8(12):e81064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaz Jauri P, Kinkel LL (2014) Nutrient overlap, genetic relatedness and spatial origin influence interaction-mediated shifts in inhibitory phenotype among Streptomyces spp. FEMS Microbiol Ecol 90:1–12

    Article  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840

    Article  CAS  PubMed  Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang H-C (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46(3):552–559

    Article  Google Scholar 

  • Wang C, Wang Z, Qiao X, Li Z, Li F, Chen M, Wang Y, Huang Y, Cui H (2013) Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176(5):386–390

    Article  CAS  PubMed  Google Scholar 

  • Weerakoon DMN, Reardon CL, Paulitz TC, Izzo AD, Mazzola M (2012) Long-term suppression of Pythium abappressorium induced by Brassica juncea seed meal amendment is biologically mediated. Soil Biol Biochem 51:44–52

    Article  CAS  Google Scholar 

  • Weinrauch Y, Msadek T, Kunst F, Dubnau D (1991) Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. J Bacteriol 173(18):5685–5693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellington EM, Cresswell N, Herron PR (1992) Gene transfer between streptomycetes in soil. Gene 115(1–2):193–198

    Article  CAS  PubMed  Google Scholar 

  • Wiggins BE, Kinkel LL (2005) Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes. Phytopathology 95(2):178–185

    Article  CAS  PubMed  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153(12):3923–3938

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Kinkel LL, Samac DA (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23(3):285–295

    Article  CAS  Google Scholar 

  • Yim G, Wang HH, Davies J (2006) The truth about antibiotics. Int J Med Microbiol 296(2–3):163–70

    Article  CAS  PubMed  Google Scholar 

  • You JL, Cao LX, Liu GF, Zhou SN, Tan HM, Lin YC (2005) Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 21(5):679–682

    Article  Google Scholar 

  • Zhai Y, Cheng B, Hu J, Kyeremeh K, Wang X, Jaspars M, Deng H, Deng Z-X, Hong K (2015) Draft genome sequence of Streptomyces sp. strain CT34, isolated from a Ghanaian soil sample. Genome Announc 3(1):e01508–e01514

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Gu J, Li Y-Q, Wang Y (2012) Genome plasticity and systems evolution in Streptomyces. BMC Bioinf 13(1):S8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Vaz Jauri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jauri, P.V., Altier, N., Kinkel, L.L. (2016). Streptomyces for Sustainability. In: Castro-Sowinski, S. (eds) Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-2555-6_12

Download citation

Publish with us

Policies and ethics