Skip to main content

Variability of Atmospheric Aerosols Over India

  • Chapter
  • First Online:
Observed Climate Variability and Change over the Indian Region

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Atmospheric aerosols play a significant role in climate change due to their ability to scatter and absorb the incoming and outgoing radiation (direct effect). In addition to this, aerosols can also impact climate through modifying cloud properties, such as droplet size distribution and cloud lifetime, a process known as “indirect effect.” Recent studies using long-term data on aerosols (>25 years in some locations) obtained from the ARFINET have revealed a statistically significant seasonally dependent increasing trend. Comparison with measurements taken about 50 years ago indicates the phenomenal nature of the increase in aerosol loading. The rate of increase is high during December to March (dry months) over the entire region. However, the trends are incoherent during April to May (pre-monsoon) and June to September (summer monsoon period). The characteristic features of the spectral variation in aerosol optical depth (AOD) clearly demonstrate the impact of anthropogenic activities on the increasing trend in aerosol loading. Data from a remote coastal location in the southern peninsula (Thiruvananthapuram), on the concentration of BC, normally considered as a tracer for human impact, show a decreasing trend of ~250 ng m−3 per year. This is particularly perceptible after 2004. CAIPEEX data reveal that during the monsoon season, aerosol number concentration showed strong vertical gradient with a transition between the boundary layer and free troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman, A. S et al., 2000, Reduction of tropical cloudiness by soot, Science, 288, 1042–1047.

    Google Scholar 

  • Albrecht, B. A. 1989, Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, doi:10.1126/science.245.4923.1227.

  • Alpert, P et al., 1998, Quantification of dust -forced heating of the lower troposphere, Nature, 395, 367–370.

    Google Scholar 

  • Andreae, MO, 2005, Jones, CD; Cox, PM, Strong present-day aerosol cooling implies a hot future, NATURE, 435, 1187-1190.

    Google Scholar 

  • Ångström, A. (1961). Techniques of Determining the Turbidity of the Atmosphere, Tellus, 8:214-223.

    Google Scholar 

  • Arimoto, R., et al., 1995, Trace elements in the atmosphere over the north Atlantic. Journal of Geophysical Research 100, 1199–1213.

    Google Scholar 

  • Ashok, N. M., H. C. Bhatt, T. Chandrasekar, J. N. Desai, and D. B. Vaidya, 1984, Twilight optical studies of the El Chichon volcanic dust over Ahmedabad, India. J. Atmos. Terr. Phys., 46, 411-418.

    Google Scholar 

  • Babu, S. S., and K. K. Moorthy, Anthropogenic impact on aerosol black carbon mass concentration at a tropical coastal station: A case study, Current Science, 81, 1208–1214, 2001.

    Google Scholar 

  • Babu, S. S., K. K. Moorthy, and S. K. Satheesh (2004), Aerosol black carbon over Arabian Sea during intermonsoon and summer monsoon seasons, Geophys. Res. Lett., 31, L06104, doi:10.1029/2003GL018716.

  • Babu, S.S., Moorthy, K.K., Manchanda, R.K., Puna Ram Sinha, Satheesh, S.K., Dinkar Prasad Vajja, Srinivasan, S., Arun Kumar, V.H., 2011, Free tropospheric black carbon aerosol measurements using high altitude balloon: Do BC layers build “their own homes” up in the atmosphere?. Geophysical Research Letters 38, L08803, doi:10.1029/2011GL046654.

  • Babu, S.S., S.K. Satheesh and K. Krishna Moorthy, 2002, Enhanced aerosol radiative forcing due to aerosol black carbon at an urban site in India, Geophys. Res. Lett., 29 (18), 1880, doi:10.1029/2002GL015826.

  • Babu, S.S., S. K. Satheesh, Moorthy,K.K., C. B. S. Dutt, Vijayakumar S Nair, Denny P Alappattu and P K Kunhikrishnan, Aircraft Measurements of Aerosol Black carbon from a coastal location in the north-east part of peninsular India during ICARB, Journal of Earth System Science, 117, S1, 263-271, 2008.

    Google Scholar 

  • Babu, S.S., M. R. Manoj, K. Krishna Moorthy, Mukunda M. Gogoi,Vijayakumar S. Nair, Sobhan Kumar Kompalli, S. K. Satheesh, K. Niranjan, K. Ramagopal, P. K. Bhuyan, and Darshan Singh, 2013, Trends in aerosol optical depth over Indian region: Potential causes, and impact indicators, J. Geophys. Res , 118, 11,794–11,806, doi:10.1002/2013JD020507.

  • Barrie, LA; Yi, Y; Leaitch, WR; et al., 2001, A comparison of large-scale atmospheric sulphate aerosol models (COSAM): overview and highlights, TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 53, 615-645.

    Google Scholar 

  • Beegum, S. N., Moorthy, K. K., Babu, S. S., Satheesh, S. K., Vinoj, V., Badarinath, K. V. S., Safai, P. D., Devara, P. C. S., Singh, S., Vinod, Dumka, U. C., and Pant, P.: Spatial distribution of aerosol black carbon over India during pre-monsoon season, Atmos. Environ., 43, 1071–1078, doi:10.1016/j.atmosenv.2008.11.042, 2009.

    Google Scholar 

  • Beegum, S.N., Moorthy,K.K., V. S. Nair, S. S. Babu, S K Satheesh, V Vinoj, R. R. Reddy, K Rama Gopal, K V S Badarinath, K Niranjan, S. K. Pandey, M Behera, A Jeyaram, P K Bhuyan, M M Gogoi, Sacchidanand Singh, P Pant, U C Dumka, Yogesh Kant, J C Kuniyal, Darshan Singh. Characteristics of Spectral Aerosol Optical Depths over India during ICARB, Journal of Earth System Science, 117, S1, 303-313, 2008.

    Google Scholar 

  • Bergametti, G., et al., 1989, African dust observed over Canary islands: source regions identification and transport pattern for some summer situations. Journal of Geophysical Research 94, 14,855–14,864.

    Google Scholar 

  • Bollasina, M.A., Y. Ming, V. Ramaswamy, 2011, Anthropogenic Aerosols and the weakening of the South Asian Summer Monsoon, Science, 334, 502-505.

    Google Scholar 

  • Cachier, H, M. P. Brémond and P. Buat-Ménard (1989), Carbonaceous aerosols from different tropical biomass burning sources, Nature, 340, 371–373, doi:10.1038/340371a0.

  • Carlson, T.N., Prospero, J.M., 1972, The large scale movement of Saharan air outbreaks over the equatorial North Atlantic. Journal of the Atmospheric Science 11, 283–297.

    Google Scholar 

  • Chameides et. al., 1999, Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls?, Proc. of National Academy of Sciences, 96, 13626-13633.

    Google Scholar 

  • Chand, D., R. Wood, T.L. Anderson, S.K. Satheesh and R.J. Charlson, 2009, Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nature Geoscience, DOI: 10.1038/NGEO437, 181-184.

    Google Scholar 

  • Charlson, R. J, J. Lagner, H. Rodhe, C. B. Leovy, and S. G. Warren (1991), Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus, Ser. AB, 43, 152–163

    Google Scholar 

  • Charlson, R. J, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hoffman (1992), Climate forcing by anthropogenic aerosols, Science, 255, 423–430.

    Google Scholar 

  • Chate, D. M., and P. C. S. Devara (2005), Parametric study of scavenging of atmospheric aerosols of various chemical species during thunderstorm and nonthunderstorm rain events, J. Geophys. Res., 110, D23208, doi:10.1029/2005JD006406.

  • Chung, CE; Ramanathan, V, 2006, Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel, JOURNAL OF CLIMATE, 19, 2036-2045, 2006.

    Google Scholar 

  • Dani, KK, Raj, PE, Devara, PCS, Pandithurai, G, Sonbawne, SM, Maheskumar, RS, Saha, SK Jaya Rao, Y. 2012. Long-term trends and variability in measured multi-spectral aerosol optical depth over a tropical urban station in India. International Journal of Climatology 32: 153–160, DOI:10.1002/joc.2250.

  • Delany, A.C., Pollock, W.H., Shedlovsky, J.P., 1973, The tropospheric aerosol: the relative contribution of marine and continental components 78, 6249–6265.

    Google Scholar 

  • Devara, P.C.S, Raj, P.E and S. Sharma (1994), Remote sensing of atmospheric aerosol in the nocturnal boundary layer using lidar, Environ. Pollut., 85, 97–102.

    Google Scholar 

  • Devara, P.C.S., Raj, P.E., Pandiduari, G 1995, Aerosol-profile measurements in the lower troposphere with four-wavelength bistatic argon-ion lidar. Applied Optics, 34, pp. 51–65.

    Google Scholar 

  • Dey, S. and L. Girolamo, 2011, A decade of change in aerosol properties over the Indian subcontinent, Geophys. Res. Lett., 38, L14811, doi:10.1029/2011GL048153.

  • Dhanorkar, S. and Kamra, A.K. Diurnal and seasonal variations of the small-, intermediate-, and large-ion concentrations and their contributions to polar conductivity, Journal of Geophysical Research, 98: doi: 10.1029/93JD00464, 1993.

  • Dipu, S., T.V. Prabha, G. Pandithurai, J. Dudhia, G. Pfister, K. Rajesh and B.N. Goswami, 2013, Impact of elevated aerosol layer on the cloud microphysical properties prior to monsoon onset, Atmos. Environ, 70, 454-467.

    Google Scholar 

  • d’Almeida, G.A., 1986, A model for Saharan dust transport. Journal of Climate and Applied Meteorology 25, 903–916.

    Google Scholar 

  • d’Almeida, G.A., Koepke, P., Shettle, E.P., 1991, Atmospheric Aerosols-Global Climatology and Radiative Characteristics, In: Deepak, A., (Ed.) Hampton, VA.

    Google Scholar 

  • Dubovik, O., A. Sinyuk, T. Lapyonok, B.N. Holben, M. Mishchenko, P. Yang, T.F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W.J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, 2006: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.

  • Dumka, U.C. et al., 2006, Surface changes in solar irradiance due to aerosols over central Himalayas, J. Geophys. Res., 33 (20): Art. No. L20809, doi:10.1029/2006GL027814,

  • Eriksson, E., 1959, The yearly circulation of chloride and sulphur in nature. Meteorological, geological and pedological implications, Part-I. Tellus 11, 375–403.

    Google Scholar 

  • Eriksson, E., 1960, The yearly circulation of chloride and sulphur in nature Meteorological, geological and pedological implications, Part-II. Tellus 12, 63–109.

    Google Scholar 

  • Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999, The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56: 4100-4117.

    Google Scholar 

  • Feldpausch, P., Fiebig, M., Fritzsche, L., and Petzold, A.: A Measurement of ultrafine size distributions by a combination of diffusion screen separators and condensation particle counters, J. Aerosol. Sci., 37, 577–597, 2006.

    Google Scholar 

  • Ganguly D, Jayaraman A, Rajesh TA, et al., 2006,Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing, J. Geophys. Res.,111, Article Number: D15217.

    Google Scholar 

  • Ganguly D., et al., 2005, Single scattering albedo of aerosols over the central India: Implications for the regional aerosol radiative forcing, Geophys. Res. Lett., 32, L18803.

    Google Scholar 

  • Gadhavi, H., and Jayaraman, A., 2006, Airborne lidar study of the vertical distribution of aerosols over Hyderabad, an urban site in central India, and its implication for radiative forcing calculations. Ann. Geophys., 24, 2461–2470.

    Google Scholar 

  • Gautam, R., et al., 2011. Accumulation of aerosol over the Indo-Gangetic plains and southern slopes of the Himalayas: Distribution, properties and radiative effects during the 2009 premonsoon season. Atmospheric Chemistry and Physics 11, 12,841–12,863, doi:10.5194/acp-11-12841-2011.

  • Gogoi, M.M., K.K. Moorthy, Kompalli, Sobhan Kumar, J.P. Chaubey, S.S. Babu, M.R. Manoj, V.S. Nair, T.P. Prabhu, “Physical and optical properties of aerosols in a free tropospheric environment: Results from long-term observations over western trans-Himalayas”, Atmospheric Environment, 84, 262-274, 2014. (http://dx.doi.org/10.1016/j.atmosenv.2013.11.029)

  • Gong, S.L., Zhang, X.Y., Zhao, T.L., McKendry, I.G., Jaffe D.A., Lu, N.M., 2003, Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia. 2: Model simulation and validation. Journal of Geophysical Research 108 (D9).

    Google Scholar 

  • Haywood, J. M., Johnson, B.J., Osborne, S.R., Mulcahy, J., Brooks, M.E., Harrison, M., Milton, S.F., Brindley, H., 2011. Observations and modeling of the solar and terrestrial radiative effects of Saharan dust: a radiative closure case-study over oceans during the GERBILS campaign, Q. J. R. Meteorol. Soc., 137: 1211–1226, DOI: 10.1002/qj.770.

  • Holben, B., D. Tanré, A. Smirnov, et al. (2001), An emerging groundbased aerosol climatology: aerosol optical depth from AERONET, J. Geophys. Res., 106, 12067–12098.

    Google Scholar 

  • Huang et al., 2008, Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23, doi:10.1029/2008JD010620.

  • Intergovernmental Panel on Climate Change (2007), Climate Change 2007, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change .In: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324.

  • Jaswal, A.K., Kumar, N., Prasad, A.K. et al., Decline in horizontal surface visibility over India (1961–2008) and its association with meteorological variables, Nat Hazards, 68:929. doi:10.1007/s11069-013-0666-2, 2013.

  • Jayaraman, A., Lubin, D., Ramachandran, S., Ramanathan, V., Woodbridge, E., Collins, W.D. and Zalpuri, K.S. (1998). Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise. Journal of Geophysical Research 103: doi: 10.1029/98JD00559

  • Jayaraman, A., Ramachandran, S., Acharya, Y.B., Subbaraya, B.H., 1995, Pinatubo volcanic aerosol layer decay observed at Ahmedabad (23 N) India using Nd:YAG backscatter lidar. Journal of Geophysical Research Letters, 100, pp. 23209–23214.

    Google Scholar 

  • Jayaraman, A., Subbaraya, B. H., and Acharya Y. B., 1987, The vertical distribution of aerosol concentration and their size distribution function over the tropics and their role in radiation transfer. Physica Scripta, 36, 358–361.

    Google Scholar 

  • Jethva, H., S. K. Satheesh, and J. Srinivasan (2007), Assessment of second-generation MODIS aerosol retrieval (Collection 005) at Kanpur, India, Geophys. Res. Lett., 34, L19802, doi:10.1029/2007GL029647

  • Junge, C.E., 1972, Our knowledge of the Physico-Chemistry of aerosols in the undisturbed marine environment. Journal of Geophysical Research 77, 5183–5200.

    Google Scholar 

  • Kahn, R. A., M. J. Garay, D. L. Nelson, K. K. Yau, M. A. Bull, B. J. Gaitley, J. V. Martonchik, and R. C. Levy (2007), Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies, J. Geophys. Res., 112, D18205, doi:10.1029/2006JD008175.

  • Kanawade VP, Tripathi SN, Siingh D, Gautam AS, Srivastava AK, Kamra AK, Soni VK, Sethi V. 2014. Observations of new particle formation at two distinct Indian subcontinental urban locations, Atmos. Environ. 96 :370 – 379, doi: 10.1016/j.atmosenv.2014.08.001

  • Kaskoutis D. et al. 2011, Variability and trends of aerosol properties over Kanpur, northern India using AERONET data (2001–10), Environ. Res. Lett., 7 (2012) 024003.

    Google Scholar 

  • Kaufman, YJ; Remer, LA; Tanre, D; et al., A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean. IEEE Transactions on Geoscience and Remote Sensing, 43, 2886–2897, 2005.

    Google Scholar 

  • Khemani, L. T., Momin, G. A., Naik, M. S., Vijayakumar, R. and Ramana Murty, Bh. V., Chemical composition and size distribution of atmospheric aerosols over the Deccan Plateau, India. Tellus, v. 34, pp. 151–158, 1982.

    Google Scholar 

  • King et al., 1978, M.D. King, D.M. Byrne, B.M. Herman, J.A. Reagan, Aerosol size distribution obtained by inversion of spectral optical depth measurements, J. Atmos. Sci., 35 (1978), pp. 2153–2167

    Google Scholar 

  • King, M.D. (1982). Sensitivity of Constrained Linear Inversion to the Selection of Lagrange Multiplier., J. Atmos. Sci., 39: 1356–1369

    Google Scholar 

  • Kohler, H., 1936, The nucleus in and the growth of hygroscope droplets. Transactions of the Faraday Society 32, 1152–1161.

    Google Scholar 

  • Kohler, H., 1941, An experimental investigation on sea water nuclei. Nova Acta Regional Society, Upsaliensis 4, 1–55.

    Google Scholar 

  • Kientzler, C.F., et al., 1954, Photographic investigation of the projection of droplets by bubbles bursting at a water surface. Tellus 6, 1–7 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 43, 2886-2897, 2005.

    Google Scholar 

  • Kim, D. H., B. J. Sohn, T. Nakajima, and T. Takamura, 2005, Aerosol radiative forcing over East Asia determined from ground-based solar radiation measurements, J. Geophys. Res., 110, D10S22, doi:10.1029/2004JD004678.

  • Kompalli, Sobhan Kumar, S. Suresh Babu, K. Krishna Moorthy, Mukunda M. Gogoi, Vijayakumar S. Nair and Jai Prakash Chaubey, “The formation and growth of ultrafine particles in two contrasting environments: A case study”, Annales Geophysicae, 32, 817–830, doi:10.5194/angeo-32-817-2014, 2014.

  • Konwar, M., R. S. Maheskumar, J. R. Kulkarni, E. Freud, B. N. Goswami, and D. Rosenfeld, 2012, Aerosol control on depth of warm rain in convective clouds, J. Geophys. Res., 117, D13204, doi:10.1029/2012JD017585.

  • Koren, I; Kaufman, YJ; Remer, LA; et al., 2004, Measurement of the effect of Amazon smoke on inhibition of cloud formation, SCIENCE, 303, 1342-1345,

    Google Scholar 

  • Koren, I., Kaufman, Y. J., Rosenfeld, D.L., Remer, A., and Rudich, Y., 2005, Aerosol invigoration and restructuring of Atlantic convective clouds, Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.

  • Koren, Ilan; Martins, J. Vanderlei; Remer, Lorraine A.; et al., 2008,Smoke invigoration versus inhibition of clouds over the Amazon, SCIENCE, 321, 946-949.

    Google Scholar 

  • Koren, Ilan; Dagan, Guy; Altaratz, Orit, 2014, From aerosol-limited to invigoration of warm convective clouds, SCIENCE, 344, 1143-1146.

    Google Scholar 

  • Kulkarni, J.R., Maheskumar, R.S., Morwal, S.B., Padmakumari, B., Konwar, M., Deshpande, C.G., Joshi, R.R., Bhalwankar, R.V., Pandithurai, G., Safai, P.D., Narkhedkar, S.G., Dani, K.K., Nath, A., Sathy Nair, Sapre, V.V., Puranik, P.V., Kandalgaonkar, S.S., Mujumdar, V.R., Khaladkar, R.M., Vijayakumar, R., Prabha T.V. , Goswami, B.N., 2012, The Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX): Overview and Preliminary Results. Current Science 102, 413-425.

    Google Scholar 

  • Kulshrestha, U.C., Saxena, A., Kumar, N., Kumari, K.M. and Srivastava, S.S., Chemical Composition Association of Size Differentiated Aerosols at a Suburban Site in a Semi Arid Tract of India, J. Atmo. Chem.29: 109-118, 1998.

    Google Scholar 

  • Lal, D.M., S.D. Patil, H.N. Singh, S.D. Ghude, S. Tiwari and M.K. Srivastva, 2013, Influence of aerosol on clouds over Indo-Gangetic Plain, India, Clim. Dyn, 41, 601-612.

    Google Scholar 

  • Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399-10420, doi:10.5194/acp-10-10399-2010, 2010.

  • Liu, D., Wang, Z., Liu, Z., Winker, D., and Trepte, C., 2008, A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements, J. Geophys. Res., 113, D16214, doi:10.1029/2007JD009776.

  • Lohmann, U. and Feichter, J., 2001, Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale?, Geophys. Res. Lett., 28, doi:10.1029/2000GL012051

  • Lovett, R.F., 1978, Quantitative measurement of airborne sea- salt in the North Atlantic. Tellus 30, 358–364.

    Google Scholar 

  • Lu, Z.; Streets, D.G.; de Foy, B.; Krotkov, N.A. Ozone Monitoring Instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005–2012; Environ. Sci. Technol., 47, 13993–14000, 2013.

    Google Scholar 

  • Miller, R.L., and I. Tegen, 1998: Climate response to soil dust aerosols. J. Climate, 11, 3247–3267, doi:10.1175/1520-0442.

  • Mani, A., 1968, Aspects of maintenance and calibration, Bull. Amer. Met. Society, 49, 1115.

    Google Scholar 

  • Mani, A., Huddar, B.B., 1972, Studies of surface aerosols and their effects on atmospheric electric parameters, Pune and Applied Geophysics, 100, 154–166.

    Google Scholar 

  • Mani, A., and Chacko.O., 1980, Attenuation of Solar Radiation in the Atmosphere, Solar Energy, 24, 347–349, 1980.

    Google Scholar 

  • McGill, M. J., et al., 2007, Airborne validation of spatial properties measured by the CALIPSO lidar, J. Geophys. Res., 112, D20201, doi:10.1029/2007JD008768.

  • Monahan, E.C., 1968, Sea spray as a function of low elevation wind speed. Journal of Geophysical Research 73, 1127–1137.

    Google Scholar 

  • Monahan, E.C., Davidson, K.L., Spiel, D.E., 1982, White cap aerosol productivity deduced from simulation tank measurements. Journal of Geophysical Research 87, 8898–8904.

    Google Scholar 

  • Monahan, E.C., Fairall, C.W., Davidson, K.L., Jones Boyle, P., 1983, Observed inter-relations between 10 m winds, Ocean white caps and marine aerosols. Quarterly Journal of the Royal Meteorological Society 109, 379–392.

    Google Scholar 

  • Moorthy, K. K., Babu, S. S., Sunilkumar, S. V., Gupta P. K., and Gera, B. S., 2004, Altitude profiles of aerosol BC, derived from aircraft measurements over an inland urban location in India, Geophys. Res. Lett., 31, L22103.

    Google Scholar 

  • Moorthy, K. K, P.R. Nair, B.V.K. Murthy, S.K. Satheesh, S.K., 1996, Time Evolution of the Optical Effects and Aerosol Characteristics of Mt. Pinatubo Origin from Ground Based Observation, J. Atmos. Terr. Phys., 58(10), 1101–1116.

    Google Scholar 

  • Moorthy, K.K., S. K. Satheesh and B.V. Krishna Murthy, 1997, Investigations of Marine Aerosols over the Tropical Indian Ocean, J. Geophys. Res., 102, 18,827-18,842, doi: 10.1029/97JD01121.

  • Moorthy K.K. et al. (1999), Aerosol Climatology over India. 1 - ISRO GBP MWR network and database, ISRO/GBP, SR-03- 99.

    Google Scholar 

  • Moorthy, K.K., S.K. Satheesh, S. Suresh Babu, C.B.S. Dutt, Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): An Overview, Journal of Earth System Science, 117, S1, 243-262, 2008.

    Google Scholar 

  • Moorthy, K. K. S.S. Babu, S.K. Satheesh, et al., 2009, Climate implications of atmospheric aerosols and trace gases: Indian Scenario,”Climate Sense”, pp157-160, Published by WMO (ISBN: 978-92-63-11043-5), Tudor Rose, UK.

    Google Scholar 

  • Moorthy, K.K., S.K. Satheesh, 2011, Black carbon aerosols over India, UNEP’s Black Carbon e-Bulletin, 3, 1-3.

    Google Scholar 

  • Moorthy, KK; Nair, PB; Murthy, BVK, 1988, A study on Aerosol optical depth at a coastal station, Trivandrum, Indian Journal of Radio & Space Physics, 17, 16-22

    Google Scholar 

  • Moorthy, KK; Nair, PR; Murthy, BVK, 1989, Multiwavelength solar radiometer network and features of Aerosol spectral optical depth at Trivandrum, Indian Journal of Radio & Space Physics, 18, 5-6, 194-201.

    Google Scholar 

  • Moorthy, KK; Nair, PR; Murthy, BVK, 1991, Size distribution of coastal aerosols - Effects of local-sources and sinks, Journal of Applied Meteorology, 30, 844-852.

    Google Scholar 

  • Moorthy, KK; Nair, PR; Prasad, BSN; et al., 1993, Results from the MWR network of IMAP. Indian Journal of Radio & Space Physics, 22, 243-258, 1993.

    Google Scholar 

  • Moorthy, K.,K., S. S.Babu, M. R. Manoj, and S. K. Satheesh (2013), Buildup of aerosols over the Indian Region, Geophys. Res. Lett., 40, 1011–1014, doi:10.1002/grl.50165.

  • Moorthy, K.K., S.V. Sunilkumar, P S Pillai, K. Parameswaran, P R Nair, Y N Ahmed, K. Ramgopal, K. Narasimhulu, R R Reddy, V. Vinoj, S.K. Satheesh, K. Niranjan, B. M Rao, P.S. Brahmanandam, A Saha, K.V.S. Badarinath, T.R. Kiranchand and K. M Latha, Wintertime Spatial Characteristics of Boundary Layer Aerosols over Peninsular India., J. Geophys. Res., 110, D08207, doi: 10.1029/2004JD005520, 1-11, 2005.

  • Moorthy,K.K., Vijayakumar S. Nair, S. Suresh Babu and S. K. Satheesh, Spatial and vertical heterogeneities in aerosol properties over oceanic regions around India: Implications for radiative forcing, Quarterly Journal of Royal Meteorological Society, 135, 2131–2145, DOI: 10.1002/qj.525, 2009.

  • Moorthy, K.K., V. Sreekanth, J.P. Chaubey, M.M. Gogoi, S.S. Babu, S.K. Kompalli , S.P. Bagare, B.C. Bhatt, V. Gaur, T.P. Prabhu, and S.N. Singh, “Fine and ultra fine particles at near free-tropospheric environment over the high altitude station Hanle, in Trans- Himalayas: New particle formation and size distribution”, Journal of Geophysical Research, 116, D20216, 1-12, 2011. (http://dx.doi.org/doi:10.1029/2011JD016343)

  • Murthy, Krishna, B.V., 1988, Radiation budget of the middle atmosphere. Indian Journal of Radio Space Physics 17, 203–219.

    Google Scholar 

  • Nair VS, Moorthy KK, Alappattu DP, et al., 2007, Winter-time aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport, Journal of Geophysical Research, 112, D13205.

    Google Scholar 

  • Nair, V.S., K.K. Moorthy, S. S. Babu, K Narasimhulu, Siva Sankara Reddy, R Ramakrishna Reddy, K Rama Gopal, V Sreekant, B L Madhavan, and K Niranjan, Size segregated aerosol mass concentration measurements over the Arabian Sea during ICARB, Journal of Earth System Science, 117, S1, 2315-323, 2008.

    Google Scholar 

  • Narasimha, R. et al., 2000, IGBP in India 2000: A status report on project, INSA report, pp. 1–496

    Google Scholar 

  • Niranjan, K., Ramesh Babu, Y., Satyanarayana, G. V., and Thulasiraman, S., Aerosol spectral optical dephs and typical size distributions at a coastal urban location in India, Tellus, 49B, 439–446, 1997.

    Google Scholar 

  • Niranjan,K., V. Sreekanth, B. L. Madhavan, and Moorthy, K.K., Aerosol physical properties and Radiative forcing at the outflow region from the Indo-Gangetic plains during typical clear and hazy periods of wintertime, Geophys. Res. Lett, 34, L19805, doi:10.1029/2007GL031224, 2007.

  • Niranjan,K., V. Sreekanth, B. L. Madhavan, and Moorthy,K.K., Wintertime aerosol characteristics at a north Indian site Kharagpur in the Indo-Gangetic plains located at the outflow region into Bay of Bengal, J. Geophys. Res., 111, D24209, doi:10.1029/2006JD007635, 2006

  • Pandithurai, G., T. Takamura, J. Yamaguchi, K. Miyagi, T. Takano, Y. Ishizaka, and A. Shimizu, 2009, Aerosol effect on cloud droplet size as monitored from surface remote sensing over East China Sea region, Geophys. Res. Lett., 36, L13805, doi:10.1029/2009GL038451.

  • Pandithurai, G., S. Dipu, T. V. Prabha, R. S. Maheskumar, J. R. Kulkarni, and B. N. Goswami, 2012, Aerosol effect on droplet spectral dispersion in warm continental cumuli, J. Geophys. Res., 117, D16202, doi:10.1029/2011JD016532.

  • Parameswaran, K., K.O. Rose, and B.V. Krishna Murthy, Aerosol characteristics from bi-static Lidar observation, J. Geophys. Res., 89,  No. D2, 2541-2552, 1984.

    Google Scholar 

  • Padmakumari, B., J. M. Trigo-Rodriguez, A. L. Londhe, H. K. Trimbake, and D. B. Jadhav, 2005, Optical observations of meteoric dust in the middle atmosphere during Leonid activity in recent years 2001-2003 over India. Geophys. Res. Lett., 32, L16807 doi: 10.1029/2005GL023434.

  • Padmakumari, B., A. L. Londhe, D. B. Jadhav, and H. K. Trimbake, 2006, Seasonal variability in the stratospheric aerosol layer in the current volcanically- quiescent period over two tropical stations in India using the twilight sounding method. Geophys. Res. Lett., 33, L12809 doi: 10.1029/2006GL026087.

  • Padmakumari, B., A. L. Londhe, D. B. Jadhav, 2007, Observational evidence of solar dimming: Offsetting surface warming over India. Geophys Res Lett 34: L21810. doi:10.1029/2007GL031133.

  • Padmakumari, B., R.S. Maheskumar, G. Harikishan, J.R. Kulkarni, and B.N. Goswami, 2012, Comparative study of aircraft- and satellite-derived aerosol and cloud microphysical parameters during CAIPEEX-2009 over the Indian region, International Journal of Remote Sensing, Vol. 34, No. 1, 358–373.

    Google Scholar 

  • Padmakumari, B., Maheskumar, R.S., Harikishan, G., Morwal, S.B., Prabha, T.V., Kulkarni, J.R., 2013a. In situ measurements of aerosol vertical and spatial distributions over continental India during the major drought year 2009. Atmos. Environ. 80, 107–121.

    Google Scholar 

  • Padmakumari, B., Maheskumar, R.S., Morwal, S.B., Harikishan, G., Konwar, M., Kulkarni, J.R., Goswami, B.N., 2013b. Aircraft observations of elevated pollution layers near the foothills of the Himalayas during CAIPEEX-2009. Quarterly Journal of the Royal Meteorological Society 139, 625-638, doi:10.1002/qj.1989.

  • Padmakumari, B., Trimbake, H. K., Londhe, A.L., and Jadhav, D. B., 2003, A case study of twilight probing of the atmosphere during Leonid meteor shower 2001. Current Science, 84, 1238–1241, 2003.

    Google Scholar 

  • Pandithurai, G et al., 2004, Aerosol radiative forcing over a tropical urban site in India, Geophysical research Letters, 31, L12107.

    Google Scholar 

  • Pandithurai, G., P. C. S. Devara, P. E. Raj, and S. Sharma, Retrieval of aerosol size index from high spectral resolution radiometer observations, Aerosol Sci. & Tech., 26, 154–162, 1997.

    Google Scholar 

  • Pant, P., et al., 2006, Study of aerosol black carbon radiative forcing at a high altitude location, J. Geophys. Res., 111 (D17): Art. No. D17206, doi:10.1029/2005JD006768.

  • Parameswaran, K., Rajan, R., Vijayakumar, G., Rajeev, K., Moorthy, K.K., Nair, P.R., Satheesh, S.K., 1998. Seasonal and long term variations of aerosol content in the atmospheric mixing region at a tropical station on the Arabian Sea-coast. J. Atmos. Sol.-Terr. Phys. 60 (1), 17–25.

    Google Scholar 

  • Parashar D C, Gadi R, Mandal T K, et al., Carbonaceous aerosol emissions from India, Atmos. Environ., 39, 7861–7871, 2005.

    Google Scholar 

  • Parashar et al., Dey,S. and S.N.Tripathi, 2007, Estimation of aerosol optical properties and radiative effects in the Ganga basin, northern India, during the wintertime, Journal of Geophysical Research, 112, D03203.

    Google Scholar 

  • Pathak, B., P.K. Bhuyan, M. Gogoi and K. Bhuyan, Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India, Atmospheric environment 47, 307-315, 2012.

    Google Scholar 

  • Pillai, P.S., and K. K. Moorthy, Size distribution of near surface aerosols and its relation to the columnar Aerosol Optical Depths - Response to airmass types, Ann. Geophys., 22, 3347-3351, 2004

    Google Scholar 

  • Prabha T.V., Karipot, A., Axisa, D., Padmakumari, B., Maheskumar R.S., Konwar M., Kulkarni, J.R., Goswami, B.N, 2012, Scale interactions near the foothills of Himalaya during CAIPEEX. Journal of Geophysical Research 117, D10203, doi:10.1029/2011JD0167.

  • Prospero, J.M., Carlson, T.N., 1972, Vertical and area distribution of Saharan dust over the western equatorial North Atlantic Oceans. Journal of Geophysical Research 77, 5255–5265.

    Google Scholar 

  • Prospero, J.M., et al., 1970, Dust in the Caribbean Atmosphere Traced to an African Dust Storm. Earth and Planetary Science Letters 9, 287–293.

    Google Scholar 

  • Prospero, J.M., 1979, Mineral sea salt aerosol concentrations in various Oceans regions. Journal of Geophysical Research 84, 725–731.

    Google Scholar 

  • Rahul, P.C.R., Bhawar, R.L., Ayantika, D.C., Safai, P.D., Thara, V., Padmakumari, B., and Raju, M.P., 2014, Double blanket effect caused by two layers of black carbon aerosols escalates warming in the Brahmaputra River Valley. Nature Scientific Reports, 4:3670, 2014, DOI:10.1038/srep03670, 1-7.

  • Raj, P.E., Saha, S.K., Sinbawne, S.B., Deshpande, S.M., Devara, P.C.S., Jaya Rao, Y., Dani, K.K., Pandithurai, G., 2008, Lidar observation of aerosol stratification in the lower troposphere over Pune during pre-monsoon season of 2006. Journal of Earth System Science 117(S1), 293–302.

    Google Scholar 

  • Ramachandran, S. and Jayaraman, A., 2003, Balloon-borne study of the upper tropospheric and stratospheric aerosols over a tropical station in India. Tellus, 55(3)B, 820–836.

    Google Scholar 

  • Ramachandran, S., and Kedia, S., Aerosol, clouds and rainfall: inter-annual and regional variations over India, Climate Dynamics, 40, 1591-1610, 2013.

    Google Scholar 

  • Ramachandran S., S.Kedia, R.Srivastava (2012), Aerosol optical depth trends over different regions of India, Atmos. Environ., 49, 338–347.

    Google Scholar 

  • Ramachandran S, Rengarajan R, Jayaraman A, et al., 2006, Aerosol radiative forcing during clear, hazy, and foggy conditions over a continental polluted location in north India, J. Geophys. Res., 111, Article Number: D20214.

    Google Scholar 

  • Ramanathan, V., P.J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001, Aerosol, climate, and hydrological cycle, Science, 294, 2119–2124, doi:10.1126/science.1064034.

    Google Scholar 

  • Ramana, M.V., Ramanathan, V., Podgorny, I.A., Pradhan, B.B., Shrestha, B., 2004, The direct observations of large aerosol radiative forcing in the Himalayan region. Geophysical Research Letters 31, L05111, doi:10.1029/2003GL018824.

  • Rangarajan, S., Mani, A., 1982, Total Precipitable Water in the Atmosphere over India, Proc.Indian.Acad.Sciences, 91, 189-207.

    Google Scholar 

  • Rastogi, N. and Sarin, M.M., 2009. Quantitative chemical composition and characteristics of aerosols over western India: One year record of temporal variability, Atmospheric Environment 43, 3481-3488, DOI: 10.1016/j.atmosenv.2009.04.030.

  • Ravi Kiran, V., M. Rajeevan, S. Vijaya Bhaskara Rao, and N. Prabhakara Rao, 2009, Analysis of variations of cloud and aerosol properties associated with active and break spells of Indian summer monsoon using MODIS data, Geophys. Res. Lett., 36, L09706, doi:10.1029/2008GL037135.

  • Remer, L. A., et al. (2005), The MODIS algorithm, products and validation, J. Atmos. Sci., 62, 947 – 973.

    Google Scholar 

  • Rengarajan, R., M.M. Sarin, A.K., 2007, Sudheer Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India, Journal of Geophysical Research, 112, D21307

    Google Scholar 

  • Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998, SBDART, A research and teaching tool for plane-parellel radiative transfer in the Earth’s atmosphere, Bull. Am. Meteorol. Soc., 79, 2101– 2114.

    Google Scholar 

  • Rosenfeld, Daniel; Andreae, Meinrat O.; Asmi, Ari; et al., 2014, Global observations of aerosol-cloud-precipitation-climate interactions, REVIEWS OF GEOPHYSICS, 52, 750-808.

    Google Scholar 

  • Safai, P.D., Kewat, S., Praveen, P.S., Rao, P.S.P., Momin, G.A., Ali, K., Devara, P.C.S., Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmospheric Environment, 41, 2699 – 2709, 2007.

    Google Scholar 

  • Safai, P.D., Raju, M.P., Maheskumar, R.S., Kulkarni, J.R., Rao, P.S.P., Devara, P.C.S. , 2012, Vertical profiles of black carbon aerosols over the urban locations in South India, Science of the Total Environment , 431, 323-331.

    Google Scholar 

  • Sarkar, S., R. Chokngamwong, G. Cervone, R.P.Singh and M . Kafatos, 2006, Variability of aerosol optical depth and aerosol forcing over India. Adv. Space.Res., 37, 2153-2159.

    Google Scholar 

  • Satheesh, S.K. and J. Srinivasan, A Method to Estimate Aerosol Radiative Forcing from Spectral Optical Depths, J. Atmos. Sci., 63 (3): 1082-1092, 2006.

    Google Scholar 

  • Satheesh, S.K., and K. Krishna Moorthy, 2005, Radiative Effects of Natural Aerosols: A Review, Atmos. Environ., 39 (11): 2089-2110.

    Google Scholar 

  • Satheesh, S.K., and K. Krishna Moorthy, 1996, Atmospheric Total Ozone Content from Spectral Extinction Measurements, Ind. J. Radio and Space Phys., 25, 204-210.

    Google Scholar 

  • Satheesh, S.K., Vinoj, V., Suresh Babu, S., Krishna Moorthy, K., S. Nair, V., Vertical distribution of aerosols over the east coast of India inferred from airborne LIDAR measurements, 2009, Annales Geophysicae, 27 (11), 4157-4169.

    Google Scholar 

  • Satheesh, S.K., V. Vinoj and K. Krishnamoorthy, 2010, Improved assessment of aerosol radiative forcing over oceans adjacent to Indian subcontinent, Advances in Meteorology, 2010, 1-13, doi:10.1155/2010/139186.

  • Satheesh, S.K., and V. Ramanathan, 2000, Large Difference in Tropical Aerosol Forcing at the Top of the Atmosphere and Earth’s Surface, Nature, 405, 60-63.

    Google Scholar 

  • Satheesh, S.K., V. Ramanathan, X.L. Jones, J.M. Lobert, I.A. Podgorny, J.M. Prospero, B.N. Holben and N.G. Loeb, 1999, A Model for Natural and Anthropogenic Aerosols over the Tropical Indian Ocean Derived from INDOEX data, J. Geophys. Res., 104, D22, doi: 10.1029/1999JD900478, 27, 42127, 440.

  • Satheesh, S.K.,V. Ramanathan, B. N. Holben, K. K. Moorthy, N. G. Loeb, H. Maring, J. M. Prospero and D. Savoie, 2002, Physical, Chemical and Radiative Properties of Indian Ocean Aerosols, J. Geophys. Res., 107 (D23), 4725, doi: 10.1029/2002JD002463.

  • Satheesh, S.K., Vinoj, V., Moorthy, K.K., 2006, Vertical distribution of aerosols over an urban continental site in India inferred using a micro pulse lidar. Geophysical Research Letters 33(20), L20816, doi:10.1029/2006GL027729.

  • Satheesh, S.K., K. Krishna Moorthy and B.V. Krishna Murthy, 1998, Spatial Gradients in Aerosol Characteristics over the Arabian Sea and Indian Ocean, J. Geophys. Res., 103, D20, 26,183-26,192, doi: 10.1029/98JD00803.

  • Satheesh, S. K., K. Krishna Moorthy, S. Suresh Babu, V. Vinoj and C.B.S. Dutt, 2008, Climate implications of large warming by elevated aerosol over India, 1008, Geophysical Research Letters, Vol. 35, 1-6.

    Google Scholar 

  • Sharma V K and Patil R S. (1992), Chemical composition and source identification of Bombay aerosol, Environ Technol. 13: 1043-1052.

    Google Scholar 

  • A. Smirnov, B.N. Holben, D.M. Giles, I. Slutsker, N.T. O’Neill, T.F. Eck, A. Macke, P. Croot, Y. Courcoux, S.M. Sakerin, T.J. Smyth, T. Zielinski, G. Zibordi, J.I. Goes, M.J. Harvey, P.K. Quinn, N.B. Nelson, V.F. Radionov, C.M. Duarte, R. Losno, J. Sciare, K.J. Voss, S. Kinne, N.R. Nalli, E. Joseph, K.K. Moorthy, D.S. Covert, S.K. Gulev, G. Milinevsky, P. Larouche, S. Belanger, E. Home, M. Chin, L.A. Remer, R.A. Kahn, J.S. Reid, M. Schulz, C.L. Heald, J. Zhang, K. Lapina, R.G. Kleidman, J. Griesfeller, B.J. Gaitley, Q. Tan, T.L. Diehl, Maritime aerosol network as a component of AERONET – First results and comparison with global aerosol models and satellite retrievals, Atmospheric Measurement Techniques, 4 , pp. 583–597, 2011.

    Google Scholar 

  • Sreekanth, V., Satellite derived aerosol optical depth climatology over Bangalore, India, Advances in Space Research, 51, 2297 – 2308, doi.org/10.1016/j.asr.2013.01.022, 2013.

    Google Scholar 

  • Sreekanth V, Niranjan K, Madhavan BL, 2007, Radiative forcing of black carbon over eastern India, Geophys. Res. Lett., 34, Article Number: L17818,

    Google Scholar 

  • Stuhlman Jr., O., 1932, The mechanics of effervescence. Journal of Applied Physics 2 (6), 457–466.

    Google Scholar 

  • Tare,V., 2006, Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 2. Chemical properties, Journal of Geophysical Research, 111, D23210.

    Google Scholar 

  • Tegen, I., and I. Fung, 1994, Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res. ,99, doi:10.1029/94JD01929.

  • Toba, Y., 1965a, On the giant sea salt particles in the atmosphere I. General features of the distribution. Tellus 17, 131–145.

    Google Scholar 

  • Toba, Y., 1965b, On the giant sea salt particles in the atmosphere II. Theory of the vertical distribution in the 10 m layer over the ocean. Tellus 11, 365–382.

    Google Scholar 

  • Tripathi, S. N., Sagnik Dey, Vinod Tare, S. K. Satheesh, Shyam Lal and S. Venkataramani, 2005, Enhanced layer of black carbon in a north Indian industrial city, Geophy. Res. Letts, 32, L12802, doi:10.1029/2005GL022564.

  • Tsunogai, O., et al., 1972, Chemical composition of oceanic aerosol. Journal of Geophysical Research 77, 5283–5292.

    Google Scholar 

  • Twomey, S. 1974, Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, doi:10.1016/0004-6981(74)90004-3.

  • Uno, I., et al., 2008, 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model, Geophys. Res. Lett., 35, L06803, doi:10.1029/2007GL03232

  • Vinoj V, S. K. Satheesh and KK Moorthy, 2010, Optical, radiative and source characteristics of aerosols at Minicoy, a remote island in the southern Arabian Sea, J. Geophys. Res., 115, D01201.

    Google Scholar 

  • Vinoj,V., S.K. Satheesh and K.K.Moorthy, Aerosol Characteristics at a Remote Island: Minicoy in Southern Arabian Sea, Journal of Earth System Science, 117, S1, 389-397, 2008.

    Google Scholar 

  • Wang, X., C. L. Heald, D. A. Ridley, J. P. Schwarz, J. R. Spackman, A. E. Perring, H. Coe, D. Liu, and A. D. Clarke (2014), Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 10,989–11,010, doi:10.5194/acp-14-10989-2014.

  • Woodcock, A.H., 1953, Salt nuclei in marine air as a function of altitude and wind force. Journal of Meteorology 10, 362–371.

    Google Scholar 

  • Woodcock, A.H., 1957, Atmospheric salt nuclei data for project shower. Tellus IX, 521–524.

    Google Scholar 

  • Zender, C.S., Bian, H., Newman, D., 2003,. Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. Journal of Geophysical Research 108 (D14), 4416.

    Google Scholar 

  • Zhang, J., Reid, J. S., and Holben, B. N.: An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products, Geophys. Res. Lett., 32, L15803, doi:10.1029/2005GL023254, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Satheesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Satheesh, S.K., Suresh Babu, S., Padmakumari, B., Pandithurai, G., Soni, V.K. (2017). Variability of Atmospheric Aerosols Over India. In: Rajeevan, M., Nayak, S. (eds) Observed Climate Variability and Change over the Indian Region. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2531-0_13

Download citation

Publish with us

Policies and ethics