Skip to main content

Solid Support Synthesis of a Dnp-Labeled Peptide for Assay of Matrix Metalloproteinase-2

  • Chapter
  • First Online:
Proteases in Physiology and Pathology
  • 1077 Accesses

Abstract

Herein, synthesis of a Dnp-labeled peptide, Dnp-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg-CONH2, is described by the Fmoc solid-phase method. Post-synthesis of the peptide was purified by reversed-phase HPLC. The purity of the peptide was determined by nuclear magnetic resonance total correlation spectroscopy (NMR TOCSY), and the validity of the peptide as a specific synthetic substrate for matrix metalloproteinase-2 (MMP-2) was also assessed by measuring the specific activities of the MMP-2 using the peptide as a substrate. It was found to be a suitable substrate with respect to MMP-2 and correlated well with the [14C]-gelatin degradation assay of MMP-2. Pretreatment of the pure MMP-2 with tissue inhibitor of metalloproteinase-2 (TIMP-2), a specific endogenous inhibitor of MMP-2, prevented both the Dnp-labeled peptide substrate degradation and the [14C]-gelatin degradation. Thus, the Dnp-labeled peptide can be used as a synthetic substrate for in vitro assay of MMP-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APMA:

Aminophenylmercuric acetate

DIPEA:

Diisopropylethylamine

DMF:

Dimethylformamide

Dnp:

2,4-Dinitorophenyl

Fmoc:

Fluorenylmethyloxycarbonyl

HOBt:

1-Hydroxybenzotriazole

HPLC:

High-performance liquid chromatography

MBHA resin:

4-Methylbenzhydrylamine resin

MMP-2:

Matrix metalloproteinase-2

NMR:

Nuclear magnetic resonance

OPfp ester:

Pentaflurophenyl ester

PyBOP:

(Benzotriazol-1-yloxy)tris(pyrrolidino)phosphoniumhexafluorophosphate

TFA:

Trifluoroacetic acid

TIMP-2:

Tissue inhibitor of metalloproteinase-2

TNBS:

Trinitrobenzenesulfonic acid

TOCSY:

Total correlation spectroscopy

References

  1. Masui Y, Takemoto T, Sakakibara Set al (1977) Synthetic substrates for vertebrate collagenase.Biochem med 17: 215-221

    Google Scholar 

  2. Nagai Y, Masui Y, Sakakibara S (1976) Substrate specificity of vertebrate collagenase. Biochim Biophys Acta 445:521–524

    Article  CAS  PubMed  Google Scholar 

  3. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85: 2149–2154

    Google Scholar 

  4. Doscher MS (1977) Solid-phase peptide synthesis. Academic Press, Methods Enzymol, pp 578–617

    Google Scholar 

  5. Kent SBH (1988) Chemical synthesis of peptides and proteins. Annu Rev Biochem 57:957–989

    Article  CAS  PubMed  Google Scholar 

  6. Carpino LA, Han GY (1970) 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92:5748–5749

    Article  CAS  Google Scholar 

  7. Atherton E, Meienhofer J (1972) Synthesis of the four isomers of α,β-diaminobutyric acid. J Antibiot (Tokyo) 25: 539–540

    Google Scholar 

  8. Chang C-D, Meienhofer J (1978) Solid-phase peptide synthesis using mild base cleavage of Nα-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin Int J Pept Protein Res 11:246–249

    Google Scholar 

  9. Aimoto S (2001) Contemporary methods for peptide and protein synthesis. Curr Org Chem 5:45–87

    Article  CAS  Google Scholar 

  10. Frank R, Döring R (1988) Simultaneous multiple peptide synthesis under continuous flow conditions on cellulose paper discs as segmental solid supports. Tetrahedron 44:6031–6040

    Article  CAS  Google Scholar 

  11. Woessner JF (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling the. FASEB J 5:2145–2154

    CAS  PubMed  Google Scholar 

  12. Matrisian LM (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends in Genet 6:121–125

    Article  CAS  Google Scholar 

  13. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Devl Biol 17:463–516

    Article  CAS  Google Scholar 

  14. Murphy G, Docherty AJP (1992) The matrix metalloproteinases and their inhibitors. Am J Resp Cell Mol Biol 7:120–125

    Article  CAS  Google Scholar 

  15. Ray JM, Stetler-Stevenson WG (1994) The role of matrix metalloproteinases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur Resp J 7:2062–2072

    CAS  Google Scholar 

  16. Stetler-Stevenson WG, Krutzsch HC, Wacher MP, Margulies IM, Liotta LA (1989) The activation of human type IV collagenase proenzyme. Sequence identification of the major conversion productfollowing organomercurial activation J Biol Chem 264:1353–1356

    CAS  PubMed  Google Scholar 

  17. Murphy G, Willenbrock F (1995) Tissue inhibitors of matrix metalloendopeptidases. Academic Press, Methods Enzymol, pp 496–510

    Google Scholar 

  18. Kolkenbrock H, Orgel D, Hecker-Kia A et al (1991) The complex between a tissue inhibitor of metalloproteinases (TIMP-2) and 72-kDa progelatinase is a metalloproteinase inhibitor. Eur J Biochem 198:775–781

    Article  CAS  PubMed  Google Scholar 

  19. Howard EW, Bullen EC, Banda MJ (1991) Regulation of the autoactivation of human 72-kDa progelatinase by tissue inhibitor of metalloproteinases-2. J Biol Chem 266:13064–13069

    CAS  PubMed  Google Scholar 

  20. Atherton E, Clive DLJ, Sheppard RC (1975) Polyamide supports for polypeptide synthesis. J Am Chem Soc 97:6584–6585

    Article  CAS  PubMed  Google Scholar 

  21. Sheppard RC (1980) Peptides and proteins. Biochem Soc Trans 8:744–747

    Article  CAS  PubMed  Google Scholar 

  22. Gait MJ, Sheppard RC (1979) Rapid synthesis of oligodeoxyribonucleotides. III. Effect of added carboxylate ion on the efficiency of internucleotide bond formation. Solid-phase synthesis of the dodecanucleotide, d(pT-A-A-C-T-G-C-T-C-A-C-T). Nucleic Acids Res 6:1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guy CA, Fields GB (1997) Trifluoroacetic acid cleavage and deprotection of resin-bound peptides following synthesis by Fmoc chemistry. Academic Press, Methods Enzymol, pp 67–83

    Google Scholar 

  24. Miranda LP, Alewood PF (1999) Accelerated chemical synthesis of peptides and small proteins. Proc Natl Acad Sci 96:1181–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piotto M, Saudek V, Sklenář V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  CAS  PubMed  Google Scholar 

  26. Bax A (1969) Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J MagnReson 65:355–360

    Google Scholar 

  27. Feeney J, Birdsall B (1993) NMR studies of protein-ligand interactions. In: Roberts GCK (ed) Oxford University Press, New York, pp 183–215

    Google Scholar 

  28. Murphy G, Cockett MI, Stephens PE et al (1987) Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes. Biochem J 248:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mandal A, Chakraborti T, Das S et al (2004) Matrix metalloproteinase-2-mediated inhibition of Na+-dependent Ca2+ uptake by superoxide radicals (O2 ∙ −) in microsomes of pulmonary smooth muscle. IUBMB Life 56:267–276

    Article  CAS  PubMed  Google Scholar 

  30. Wagner G, Neuhaus D, Wörgötter E et al (1986) Sequence-specific 1H-NMR assignments in rabbit-liver metallothionein-2. Eur J Biochem 157:275–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance from the Department of Biotechnology (DBT) (Government of India); the Council of Scientific and Industrial Research (CSIR), New Delhi; and the Indian Council of Medical Research (ICMR), New Delhi, is gratefully acknowledged. Thanks are due to Dr. Sudip Das (Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India) and Mr. Smriti Ranjan Maji (Bose Institute, Kolkata, West Bengal, India) for their expert technical help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Chakraborti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mandal, A., Maiti, A., Chakraborti, T., Chakraborti, S. (2017). Solid Support Synthesis of a Dnp-Labeled Peptide for Assay of Matrix Metalloproteinase-2. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_28

Download citation

Publish with us

Policies and ethics