Skip to main content

Role of Proteases in Diabetes and Diabetic Complications

  • Chapter
  • First Online:
Proteases in Physiology and Pathology
  • 1078 Accesses

Abstract

Proteases catalyze the breakdown of proteins by hydrolysis of peptide bonds. These enzymes are involved in a number of pathophysiological processes ranging from the cellular to organism level. These processes include cell growth, homeostasis, remodeling, renewal, division, metabolic pathways, tumor growth, metastasis, etc. A number of proteases are found to be involved in mediating the biochemical pathogenesis of metabolic syndrome such as diabetes and cardiovascular diseases. This chapter summarizes types of proteases, classification, and their proteolytic function in diabetes-associated complications in the kidney, eye, liver, heart, and lung. Understanding the role of proteases will provide insights into the development of preventive and therapeutic modalities for diabetes and diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn BM (2010) Introduction to the aspartic proteinase family. Aspartic Acid Proteases as Therapeutic Targets:1–21

    Google Scholar 

  2. Rao MB, Tanksale AM, Ghatge MS et al (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tyndall JD, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105:973–1000

    Article  CAS  PubMed  Google Scholar 

  4. Govind NS, Mehta B, Sharma M et al (1981) Protease and carotenogenesis in Blakeslea trispora. Phytochemistry 20:2483–2485

    Article  CAS  Google Scholar 

  5. Erez E, Fass D, Bibi E (2009) How intramembrane proteases bury hydrolytic reactions in the membrane. Nature 459:371–378

    Article  CAS  PubMed  Google Scholar 

  6. Polgár L (1987) The mechanism of action of aspartic proteases involves ‘push-pull’catalysis. FEBS Lett 219:1–4

    Article  PubMed  Google Scholar 

  7. Barrett AJ (1994) Proteolytic enzymes: serine and cysteine peptidases. Academic Press 244:1–765

    CAS  Google Scholar 

  8. Kotler MOSHE, Katz RA, Skalka AM (1988) Activity of avian retroviral protease expressed in Escherichia coli. J Virol 62:2696–2700

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kubo M, Imanaka T (1988) Cloning and nucleotide sequence of the highly thermostable neutral protease gene from Bacillus Stearothermophilus. Microbiology 134:1883–1892

    Article  CAS  Google Scholar 

  10. Koszelak S, Ng JD, Day J et al (1997) The crystallographic structure of the subtilisin protease from Penicillium cyclopium. Biochemistry 36:6597–6604

    Article  CAS  PubMed  Google Scholar 

  11. Musante L, Tataruch D, Gu D et al (2015) Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy. Journal of diabetes research 2015:1–15

    Article  Google Scholar 

  12. Olbricht CJ, Geissinger B, Gutjahr E (1992) Renal hypertrophy in streptozotocin diabetic rats: role of proteolytic lysosomal enzymes. Kidney Int 41:966–972

    Article  CAS  PubMed  Google Scholar 

  13. Raju M, Santhoshkumar P, Sharma KK (2016) Alpha-crystallin-derived peptides as therapeutic chaperones. Biochimica et Biophysica Acta (BBA)-General Subjects 1860:246–251

    Article  CAS  Google Scholar 

  14. Santhoshkumar P, Kannan R, Sharma KK (2015) Proteases in lens and cataract. In: Babizhayev MA, Li DW-C, Jacobi AK et al (eds) Studies on the cornea and lens. Springer, New York, pp 221–238

    Google Scholar 

  15. Hariharapura R, Santhoshkumar P, Sharma KK (2013) Profiling of lens protease involved in generation of αA-66-80 crystallin peptide using an internally quenched protease substrate. Exp Eye Res 109:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Papackova Z, Palenickova E, Dankova H et al (2012) Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages. Nutrition & metabolism 9:1–15

    Article  Google Scholar 

  18. Kalamidas SA, Kondomerkos DJ (2010) Autophagosomal glycogen-degrading activity and its relationship to the general autophagic activity in newborn rat hepatocytes: the effects of parenteral glucose administration. Microsc Res Tech 73:495–502

    Article  CAS  PubMed  Google Scholar 

  19. Peres GB, Juliano MA, Aguiar JAK et al (2014) Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver. Braz J Med Biol Res 47:452–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uchimura K, Hayata M, Mizumoto T et al (2014) The serine protease prostasin regulates hepatic insulin sensitivity by modulating TLR4 signalling. Nat Commun 5:1–13

    Article  Google Scholar 

  21. Hua Y, Nair S (2015) Proteases in cardiometabolic diseases: pathophysiology, molecular mechanisms and clinical applications. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1852:195–208

    Article  CAS  Google Scholar 

  22. Lungarella G, Cavarra E, Lucattelli M et al (2008) The dual role of neutrophil elastase in lung destruction and repair. Int J Biochem Cell Biol 40:1287–1296

    Article  CAS  PubMed  Google Scholar 

  23. Pitocco D, Fuso L, Conte EG et al (2012) The diabetic lung-a new target organ? The review of diabetic studies: Rev Diabet Stud 9:23–35

    Article  PubMed  PubMed Central  Google Scholar 

  24. van den Borst B, Gosker HR, Zeegers MP et al (2010) Pulmonary function in diabetes: a metaanalysis. Chest J 138:393–406

    Article  Google Scholar 

  25. Irfan M, Jabbar A, Haque AS et al (2011) Pulmonary functions in patients with diabetes mellitus. Lung India 28:89–92

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuziemski K, Specjalski K, Jassem E (2011) Diabetic pulmonary microangiopathy—fact or fiction? Endokrynol Pol 62:171–176

    PubMed  Google Scholar 

  27. Weynand B, Jonckheere A, Frans A et al (1999) Diabetes mellitus induces a thickening of the pulmonary basal lamina. Respiration 66:14–19

    Article  CAS  PubMed  Google Scholar 

  28. Ljubic S, Metelko Z, Car N et al (1998) Reduction of diffusion capacity for carbon monoxide in diabetic patients. Chest J 114:1033–1035

    Article  CAS  Google Scholar 

  29. Tetley TD (1993) New perspectives on basic mechanisms in lung disease. 6. Proteinase imbalance: its role in lung disease. Thorax 48:560–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boxer LA, Smolen JE (1988) Neutrophil granule constituents and their release in health and disease. Hematol Oncol Clin North Am 2:101–134

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Prof. Ram Rajasekharan, Director, CSIR-CFTRI, for his interest and valuable suggestions. Dr. Ravindra P. V. thanks the Department of Biotechnology, New Delhi, for funding in the form of Ramalingaswami fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Ravindra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ravindra, P.V., Girish, T.K. (2017). Role of Proteases in Diabetes and Diabetic Complications. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_13

Download citation

Publish with us

Policies and ethics