Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 200 Accesses

Abstract

Flue gases from the combustion of fossil fuels in transport and industrial sectors are a major source of CO2 emissions, and it’s estimated that exhaust flue gases account for about 59.9 % of the CO2 emissions worldwide [1]. Microbes with the ability to capture CO2 from these sources, such as microalgae, cyanobacteria, and methanogens, are of particular interest to researchers in the field of renewable energy [24]. Methanogens have several advantages over other microorganism, as they can convert CO2 to a cleaner fuel such as biogas, and separation of gaseous products do not need costly equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eliasson B, Riemer P, Wokaun (1999) A: greenhouse gas control technologies. Elsevier Science

    Google Scholar 

  2. Zhang ZY, Maekawa T (1993) Kinetic study on fermentation from CO2 and H2 using the acclimated-methanogen in batch culture. Biomass Bioenergy 4:439–446

    Article  CAS  Google Scholar 

  3. Brilman W, Alba LG, Veneman R (2013) Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation. Biomass Bioenergy 53:39–47

    Article  CAS  Google Scholar 

  4. Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953

    Article  CAS  Google Scholar 

  5. Jones WJ, Paynter MJB, Gupta R (1983) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97

    Article  Google Scholar 

  6. Goyal N, Widiastuti H, Karimi IA, Zhou Z (2014) Genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. Mol BioSyst 10:1043–1054

    Article  CAS  Google Scholar 

  7. Costa KC, Lie TJ, Jacobs MA, Leigh JA (2013) H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis. MBio 4

    Google Scholar 

  8. Blank CE, Kessler PS, Leigh JA (1995) Genetics in methanogens: transposon insertion mutagenesis of a Methanococcus maripaludis nifH gene. J Bacteriol 177:5773–5777

    CAS  Google Scholar 

  9. Kessler PS, McLarnan J, Leigh JA (1997) Nitrogenase phylogeny and the molybdenum dependence of nitrogen fixation in Methanococcus maripaludis. J Bacteriol 179:541–543

    CAS  Google Scholar 

  10. Kessler PS, Daniel C, Leigh JA (2001) Ammonia switch-off of nitrogen fixation in the methanogenic archaeon Methanococcus maripaludis: mechanistic features and requirement for the novel GlnB homologues, NifI(1) and NifI(2). J Bacteriol 183:882–889

    Article  CAS  Google Scholar 

  11. Kessler PS, Leigh JA (1999) Genetics of nitrogen regulation in Methanococcus maripaludis. Genetics 152:1343–1351

    CAS  Google Scholar 

  12. Whitman WB, Sohn S, Kuk S, Xing R (1987) Role of amino acids and vitamins in nutrition of mesophilic Methanococcus spp. Appl Environ Microbiol 53:2373–2378

    CAS  Google Scholar 

  13. Liu Y (2010) Methanococcales. In Handbook of hydrocarbon and lipid microbiology (pp. 573–581). Springer Berlin Heidelberg

    Google Scholar 

  14. Belay N, Sparling R, Daniels L (1984) Dinitrogen fixation by a thermophilic methanogenic bacterium. 312:286–288

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishu Goyal .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Goyal, N. (2016). Diazotrophy Enhances CO2 to Methane Conversion in M. maripaludis . In: In silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 via M. maripaludis. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-2510-5_5

Download citation

Publish with us

Policies and ethics