Skip to main content

Magnetorheological (MR) Fluids

  • Chapter
  • First Online:
Field Responsive Fluids as Smart Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabinow, J.: The magnetic fluid clutch. AIEE Trans. 67, 1308–1315 (1948)

    Google Scholar 

  2. Kordonski, W.I., Gorodkin, S.R., Novikova, Z.A.: The influence of ferroparticle concentration and size on mr fluid properties. In: Proceedings of the 6th International Conference on Electrorheological Fluids, Magnetorheological Suspensions, and Their Applications, 22–25, pp. 535–542. World Scientific, Singapore (1997)

    Google Scholar 

  3. Phule, P.P., Ginder, J.M.: Synthesis of novel magnetorheological fluids. MRS Bull. 23(8), 23–25 (1998)

    Google Scholar 

  4. Klingenberg, D.J.: Magnetorheology: Applications and challenges. AIChE J. 47(2), 246–249 (2001)

    Google Scholar 

  5. Phule, P.P., Ginder, J.M.: Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility. Int. J. Mod. Phys. B 13, 2019–2027 (1999)

    Google Scholar 

  6. Rosenfeld, N., Wereley, N.M., Radhakrishnan, R., Sudarshan, T.: Nanometer and micron sized particles in a bidisperse magnetorheological fluid. Int. J. Mod. Phys. B 16(17–18), 2392–2398 (2002)

    Google Scholar 

  7. Guan, J.G., Wang, W., Gong, R.Z., Yuan, R.Z., Gan, L.H., Tam, K.C.: One-step synthesis of cobalt-phthalocyanine/iron nanocomposite particles with high magnetic susceptibility. Langmuir 18(11), 4198–4204 (2002)

    Google Scholar 

  8. Kamath, G.M., Gopalakrishna, M., Wereley, N.M.: A nonlinear viscoelastic-plastic model for electrorheological fluids. Smart Mater. Struct. 6(3), 351 (1997)

    Google Scholar 

  9. Olabi, A.G., Grunwald, A.: Design and application of magneto-rheological fluid. Mater. Des. 28(10), 2658–2664 (2007)

    Google Scholar 

  10. Wang, X., Gordaninejad, F.: Study of magnetorheological fluids at high shear rates. Rheol. Acta 45, 899–908 (2006)

    Google Scholar 

  11. Carlson, J.D., Catanzarite, D.M., Clair, K.A.: Commercial magneto-rheological fluid devices. Int. J. Mod. Phys. B 10(23–24), 2857–2865 (1996)

    Google Scholar 

  12. Kciuk, M., Turczyn, R.: Properties and application of magnetorheological fluids. J. Achieve. Mater. Manuf. Eng. 18(1–2), 127–130 (2006)

    Google Scholar 

  13. Choi, H.J., Jang, I.B., Lee, J.Y., Pich, A., Bhattacharya, S., Adler, H.J.: Magnetorheology of synthesized core-shell structured nanoparticle. IEEE Trans. Magn. 41(10), 3448–3450 (2005)

    Google Scholar 

  14. Park, J.H., Kwon, M.H., Park, O.O.: Rheological properties and stability of magnetorheological fluids using viscoelastic medium and nanoadditives. Ind. Chem. Chem. Eng. 18, 580–585 (2001)

    Google Scholar 

  15. Bica, I., Choi, H.J.: Preparation and electro-thermoconductive characteristics of magnetorheological suspensions. Int. J. Mod. Phys. B 22, 5041–5064 (2008)

    Google Scholar 

  16. Park, B.J., Song, K.H., Choi, H.J.: Magnetic carbonyl iron nanoparticle based magnetorheological suspension and its characteristics. Mater. Lett. 63, 1350–1352 (2009)

    Google Scholar 

  17. Ginder, J.M.: Behavior of magnetorheological fluids. MRS Bull. 23, 26–29 (1998)

    Google Scholar 

  18. Ashour, O., Rogers, C.A., Kordonsky, W.: Magnetorheological fluids: materials, characterization, and devices. J. Intell. Mater. Syst. Struct. 7(2), 123–130 (1996)

    Google Scholar 

  19. Bossis, G., Lacis, S., Meunir, A., Volkova, O.: Magnetorheological fluids. J. Magn. Magn. Mater. 252, 224–228 (2002)

    Google Scholar 

  20. Bossis, G., Lemaire, E.: Yield stresses in magnetic suspensions. J. Rheol. 35, 1345 (1991)

    Google Scholar 

  21. Lemaire, E., Meunier, A., Bossis, G., Liu, J., Felt, D., Bashtovoi, P., Matoussevitch, N.: Influence of the particle size on the rheology of magnetorheological fluids. J. Rheol. 39, 1011 (1995)

    Google Scholar 

  22. Ashtiani, M., Hashemabadi, S.H., Ghaffari, A.: A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 374, 716–730 (2015)

    Google Scholar 

  23. Wereley, N.M., Trihan, J., Kotha, S., Suggs, A., Radhakrishnan, R., Love, B.J., Sudarshan, T.S.: Nanometer and micron sized particles in a bidisperse magnetorheological fluid. In: ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, American Society of Mechanical Engineers, pp. 1545–1552 (2003)

    Google Scholar 

  24. Song, K.H., Park, B.J., Choi, H.J.: Effect of magnetic nanoparticle additive on characteristics of magnetorheological fluid. IEEE Trans. Magn. 45(10), 4045–4048 (2009)

    Google Scholar 

  25. Shah, K., Choi, S.B.: Smart Mater. Struct. 24(1), 015004 (2014)

    Google Scholar 

  26. Foister, R.T.: Magnetorheological Fluids. US Patent No. 5,667,715 (1997)

    Google Scholar 

  27. Sedlačík, M., Pavlínek, V., Sáha, P., Švrčinová, P., Filip, P., Stejskal, J.: Rheological properties of magnetorheological suspensions based on core–shell structured polyaniline-coated carbonyl iron particles. Smart Mater. Struct. 19(11), 115008 (2010)

    Google Scholar 

  28. Wu, C., Yin, P., Zhu, X., Yang, C.O., Xie, Y.: Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 110(36), 17806–17812 (2006)

    Google Scholar 

  29. Verma, A., Goel, T.C., Mendiratta, R.G., Alam, M.I.: Dielectric properties of NiZn ferrites prepared by the citrate precursor method. Mater. Sci. Eng. B 60, 156–162 (1999)

    Google Scholar 

  30. Hyeon, T.: Chemical synthesis of magnetic nanoparticles. Chem. Commun. 8, 927–934 (2003)

    Google Scholar 

  31. Batlle, X., Labarta, A.: Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D J. Appl. Phys. 35(6), R15 (2002)

    Google Scholar 

  32. Enders, A., Skomski, R., Honolka, J.: Magnetic surface nanostructures. J. Phys. Condens. Matter 22(43), 433001 (2010)

    Google Scholar 

  33. Hajalilou, A., Mazlan, S.A.: A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Appl. Phys. A 122, 680 (2016)

    Google Scholar 

  34. Bean, C.P.: Hysteresis loops of mixtures of ferromagnetic micropowders. J. Appl. Phys. 26, 1381–1383 (1955)

    Google Scholar 

  35. Idza, I.R., Hashim, M., Rodziah, N., Ismayadi, I., Norailiana, A.R.: Influence of evolving microstructure on magnetic-hysteresis characteristics in polycrystalline nickel–zinc ferrite, Ni0.3Zn0.7Fe2O4. Mater. Res. Bull. 47(6), 1345–1352 (2012)

    Google Scholar 

  36. Genc, S., Phule, P.: Rheological properties of magnetorheological fluids. Smart Mater. Struct. 11, 140–146 (2002)

    Google Scholar 

  37. Nakamura, T.: Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168, 285–291 (1997)

    Google Scholar 

  38. Inui, T., Ogasawara, N.: Grain-size effects on microwave ferrite magnetic properties. IEEE Trans. Magn. 13(6), 1729–1744 (1977)

    Google Scholar 

  39. Hajalilou, A., Hashim, M., Mohamed Kamari, H., Masoudi, M.T.: Effects of milling atmosphere and increasing sintering temperature on the magnetic properties of nanocrystalline Ni0.36Zn0.64Fe2O4. J. Nanomater. 232 (Article ID 615739), 11p (2015)

    Google Scholar 

  40. Hajalilou, A., Hashim, M., Ebrahimi-Kahrizsangi, R., Sarami, N.: Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni–Zn ferrite. J. Phys. D J. Appl. Phys. 48, 145001 (2015)

    Google Scholar 

  41. Pal, M., Brahma, P., Chakravorty, D., Bhattacharyya, D., Maiti, H.S.: Nanocrystalline nickel-zinc ferrite prepared by the glass-ceramic route. J. Magn. Magn. Mater. 164(1–2), 256–260 (1996)

    Google Scholar 

  42. Kumar, V., Rana, A., Yadav, M.S., Pant, R.P.: Size-induced effect on nano-crystalline CoFe2O4. J. Magn. Magn. Mater. 320(11), 1729–1734 (2008)

    Google Scholar 

  43. de Lacheisserie, E.D.T., Gignoux, D., Schlenker, M.: Magnetism: Materials and Application. Springer, Boston (2005)

    Google Scholar 

  44. Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46(8), 1222–1244 (2007)

    Google Scholar 

  45. Buschow, K.H.J., de Boer, F.R.: Physics of Magnetism and Magnetic Materials. Kluwer, New York (2004)

    Google Scholar 

  46. Poddar, P., Wilson, J.L., Srikanth, H., Yoo, J.-H., Wereley, N.M., Kotha, S., Barghouty, L., Radhakrishnan, R.: Nanocomposite magneto-rheological fluids with uniformly dispersed Fe nanoparticles. J. Nanosci. Nanotechnol. 4(1–2), 192–196 (2004)

    Google Scholar 

  47. Patel, R.: Mechanism of chain formation in nanofluid based MR fluids. J. Magn. Magn. Mater. 323, 1360–1363 (2011)

    Google Scholar 

  48. Ginder, J.M., Davis, L.C., Elie, L.D.: Rheology of magnetorheological fluids: models and measurements. Int. J. Mod. Phys. B 10, 3293–3303 (1996)

    Google Scholar 

  49. Bossis, G., Lemaire, E., Volkova, O., Clercx, H.: Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models. J. Rheol. 41, 687–704 (1997)

    Google Scholar 

  50. Klingenberg, D.J., Zukoski, C.F.: Studies on the steady-shear behavior of electrorheological suspensions. Langmuir 6, 15–24 (1990)

    Google Scholar 

  51. Mohebi, M., Jamasbi, N., Liu, J.: Simulation of the formation of nonequilibrium structures in magnetorheological fluids subject to an external magnetic field. Phys. Rev. E 54, 5407–5413 (1996)

    Google Scholar 

  52. Li, H., Peng, X.: Simulation for the microstructure and rheology in bidisperse magnetorheological fluids. J. Comput. Chem. 7, 1405–1412 (2012)

    Google Scholar 

  53. Ido, Y., Inagaki, T., Yamaguchi, T.: Numerical simulation of microstructure formation of suspended particles in magnetorheological fluids. J. Phys. Condens. Matter 22, 324103 (2010)

    Google Scholar 

  54. Park, J.H., Chin, B.D., Park, O.O.: Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion. J. Colloid Interface Sci. 240, 349–354 (2001)

    Google Scholar 

  55. Segovia-Gutiérrez, J.P., Berli, C.L.A., de Vicente, J.: Nonlinear viscoelasticity and two-step yielding in magnetorheology: A colloidal gel approach to understand the effect of particle concentration. J. Rheol. 56, 1429–1448 (2012)

    Google Scholar 

  56. Liu, X., Lu, H., Chen, Q., Wang, D., Zhen, X.: Study on the preparation and properties of silicone oil-based magnetorheological fluids. Mater. Manuf. Process. 28(6), 631–636 (2013)

    Google Scholar 

  57. Rodríguez-López, J., Castro, P., Elvira, L., de Espinosa, F.M.: Study of the effect of particle volume fraction on the microstructure of magnetorheological fluids using ultrasound: transition between the strong-link to the weak-link regimes. Ultrasonics 61, 10–14 (2015)

    Google Scholar 

  58. Golden, M.A., Ulicny, J.C., Snavely, K.S., Smith, A.L.: Magnetorheological Fluids. US Patent No. 693,2917 (2005)

    Google Scholar 

  59. Shimada, K., Oka, H.: Magnetic characteristics of magnetic compound fluid (MCF) under DC and AC magnetic fields. J. Magn. Magn. Mater. 290–291, 804–807 (2005)

    Google Scholar 

  60. Tang, H.: Particle size polydispersity of the rheological properties in magnetorheological fluids. Sci. China Phys. Mech. Astron. 54(7), 1258–1262 (2011)

    Google Scholar 

  61. Shauly, A., Wachs, A., Nir, A.: Shear-induced particle resuspension in settling polydisperse concentrated suspension. Int. J. Multiph. Flow 26, 1–15 (2000)

    Google Scholar 

  62. Chong, J.S., Christiansen, E.B., Baer, A.D.: Rheology of concentrated suspensions. J. Appl. Polym. Sci. 15, 2007–2021 (1971)

    Google Scholar 

  63. Krieger, I.M.: Flow Properties of Latex and Concentrated Solutions, in Surfaces And Coatings, pp. 25–51. Syracuse University Press, Syracuse (1967)

    Google Scholar 

  64. Zaman, A.A., Dutcher, C.S.: Viscosity of electrostatically stabilized dispersions of monodispersed, bimodal, and trimodal silica particles. J. Am. Ceram. Soc. 89(2), 422–430 (2006)

    Google Scholar 

  65. Shokrollahi, H., Janghorban, K.: Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189(1), 1–12 (2007)

    Google Scholar 

  66. Simon, T.M., Reitich, F., Jolly, M.R., Ito, K., Banks, H.T.: The effective magnetic properties of magnetorheological fluids. Math. Comput. Model. 33(1–3), 273–284 (2001)

    Google Scholar 

  67. Liu, J., Lawrence, E.M., Wu, A., Ivey, M.L., Flores, G.A., Javier, K., Bibette, J., Richard, J.: Field-induced structures in ferrofluid emulsions. Phys. Rev. Lett. 74(14), 2828–2832 (1995)

    Google Scholar 

  68. Lemaire, E., Grasselli, Y., Bossis, G.: Field induced structure in magneto and electro-rheological fluids. J. Phys. II 2, 359–369 (1992)

    Google Scholar 

  69. Carletto, P., Bossis, G.: Field-induced structures and rheology of a magnetorheological suspension confined between two walls. J. Phys. Condens. Matter 15(15), S1437–S1449 (2003)

    Google Scholar 

  70. Ukai, T., Maekawa, T.: Patterns formed by paramagnetic particles in a horizontal layer of a magnetorheological fluid subjected to a dc magnetic field. Phys. Rev. E 69(3), 032501 (2004)

    Google Scholar 

  71. Aslam, M., Xiong-liang, Y., Zhong-chao, D.: Review of magnetorheological (MR) fluids and its applications in vibration control. J. Mar. Sci. Appl. 5(3), 17–29 (2006)

    Google Scholar 

  72. Verlinden, B., Driver, J., Samajdar, I., Doherty, R.D.: Thermo-Mechanical Processing of Metallic Materials, vol. 11. Elsevier (2007)

    Google Scholar 

  73. Starkovich, J.A., Shtarkman, E.M.: High Yield Stress Magnetorheological Material for Spacecraft Applications. US Patent 6610404 (2003)

    Google Scholar 

  74. Qi, Y., Zhang, L., Wen, W.: J. Phys. D: Anisotropy properties of magnetic colloidal materials. J. Phys. D: J. Appl. Phys. 36, L10–L14 (2002)

    Google Scholar 

  75. Lim, S.T., Cho, M.S., Jang, I.B., Choi, H.J.: Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica. J. Magn. Magn. Mater. 282, 170–173 (2004)

    Google Scholar 

  76. Cho, M.S., Lim, S.T., Jang, I.B., Choi, H.J., Jhon, M.S.: Encapsulation of spherical iron-particle with PMMA and its magnetorheological particles. IEEE Trans. Magn. 40, 3036–3038 (2004)

    Google Scholar 

  77. Fang, F.F., Jang, I.B., Choi, H.J.: Single-walled carbon nanotube added carbonyl iron suspension and its magnetorheology. Diam. Rel. Mater. 16(4), 1167–1169 (2007)

    Google Scholar 

  78. Arief, I., Mukhopadhyay, P.K.: Preparation of spherical and cubic Fe55Co45 microstructures for studying the role of particle morphology in magnetorheological suspensions. J. Magn. Magn. Mater. 360, 104–108 (2014)

    Google Scholar 

  79. Gołdasz, J., Sapiński, B.: Insight into Magnetorheological Shock Absorbers, pp. 13–23. Springer, New York (2015)

    Google Scholar 

  80. Smith, D.A., Pond, R.C.: Bollmann’s 0-Iattice theory; a geometrical approach to interface structure. Int. Mater. Rev. 21, 61–74 (1976)

    Google Scholar 

  81. Caruso, F., Susha, A.S., Giersig, M., Möhwald, H.: Magnetic CoreąShell particles: Preparation of magnetite multilayers on polymer latex microspheres. Adv. Mater. 11(11), 950–953 (1999)

    Google Scholar 

  82. Liu, Y.D., Choi, H.J., Choi, S.-B.: Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field. Colloids Surf. A Physicochem. Eng. Asp. 403, 133–138 (2012)

    Google Scholar 

  83. Pu, H., Jiang, F.: Towards high sedimentation stability: magnetorheological fluids based on CNT/Fe3O4 nanocomposites. Nanotechnology 16(9), 1486–1489 (2005)

    Google Scholar 

  84. Shulman, Z.P., Kordonski, W.I.: Magnetorheological effect. Naukai Tekhnika, Minsk (in Russian), vol. 7, p. 184 (1982)

    Google Scholar 

  85. Gorodkin, S.R., Kordonskii, V.I., Medvedeva, E.V., Novikova, Z.A.: Sedimentation constant of magnetorheological liquids. J. Eng. Phys. Thermophys. 73(4), 771–775 (2000)

    Google Scholar 

  86. Gorodkin, S.R., Kordonski, W.I., Medvedeva, E.V., Novikova, Z.A., Shorey, A.B., Jacobs, S.D.: A method and device for measurement of a sedimentation constant of magnetorheological fluids. Rev. Sci. Instrum. 71(6), 2476–2480 (2000)

    Google Scholar 

  87. Chen, L.S., Chen, D.Y.: Permalloy inductor based instrument that measures the sedimentation constant of magnetorheological fluids. Rev. Sci. Instrum. 74(7), 3566–3568 (2003)

    Google Scholar 

  88. Ngatu, G.T., Wereley, N.M.: Viscometric and sedimentation characterization of bidisperse magnetorheological fluids. Magnetics. Mag. IEEE Trans. Magn. 43(6), 2474–2476 (2007)

    Google Scholar 

  89. Viota, J.L., González-Caballero, F., Durán, J.D.G., Delgado, A.V.: Study of the colloidal stability of concentrated bimodal magnetic fluids. J. Colloid Interface Sci. 309(1), 135–139 (2007)

    Google Scholar 

  90. Iglesias, G.R., López-López, M.T., Delgado, A.V., Durán, J.D.G.: Description and performance of a fully automatic device for the study of the sedimentation of magnetic suspensions. Rev. Sci. Instrum. 82, 073906 (2011)

    Google Scholar 

  91. Iglesias, G.R., Roldán, A., Reyes, L., Rodríguez-Arco, L., Durán, J.D.: Stability behavior of composite magnetorheological fluids by an induction method. J. Intell. Mater. Syst. Struct. 26(14), 1836–1844 (2015).

    Google Scholar 

  92. Hajalilou, A., Hashim, M., Kamari, H.M.: Structure and magnetic properties of Ni0.64Zn0.36Fe2O4 nanoparticles synthesized by high-energy milling and subsequent heat treatment. J. Mater. Sci. Mater. Electron. 26(3), 1709–1718 (2014)

    Google Scholar 

  93. Hajalilou, A., Hashim, M., Kamari, H.M.: Effects of additives and sintering time on the microstructure of Ni-Zn ferrite and its electrical and magnetic properties. Adv. Mater. Sci. Eng. 2014 (Article ID 138789), 1–6 (2014)

    Google Scholar 

  94. Zhao, H., Sun, X., Mao, Ch., Du, J.: Preparation and microwave–absorbing properties of NiFe2O4-polystyrene composites. Phys. B Condens. Matter. 404(1), 69–72 (2009)

    Google Scholar 

  95. Hajalilou, A., Hashim, M., Ebrahimi-Kahrizsangi, R., Kamari, H.M., Sarami, N.: Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram. Int. 40, 5881–5887 (2014)

    Google Scholar 

  96. Masoudi, M.T., Saidi, A., Hashim, M., Hajalilou, A.: Comparison of structure and magnetic properties of Mn–Zn ferrite mechanochemically synthesized under argon and oxygen atmospheres. Can. J. Phys. 93(10), 1168–1173 (2015)

    Google Scholar 

  97. Hajalilou, A., Hashim, M., Abbasi, M., Kamari, H.M., Azimi, H.: A comparative study on the effects of different milling atmospheres and sintering temperatures on the synthesis and magnetic behavior of spinel single phase Ni0.64Zn0.36Fe2O4 nanocrystals. J. Mater. Sci. Mater. Electron. 26(10), 7468–7483 (2015)

    Google Scholar 

  98. Hajalilou, A., Hashim, M., Taghi, M.: A comparative study of in-situ mechanochemically synthesized Mn0.5Zn0.5Fe2O4 ferrite nanoparticles in the MnO/ZnO/Fe2O3 and MnO2/Zn/Fe2O3 systems. Masoudi. Ceram. Int. 41(6), 8070–8079 (2015)

    Google Scholar 

  99. Katiyar, A., Singh, A.N., Shukla, P., Nandi, T.: Rheological behavior of magnetic nanofluids containing spherical nanoparticles of Fe–Ni. Powder Technol. 224, 86–89 (2012)

    Google Scholar 

  100. Bombard, A.J.F., Knobel, M., Alcantara, M.R.: Phosphate coating on the surface of carbonyl iron powder and its effect in magnetorheological suspensions. Int. J. Mod. Phys. B 21(28–29), 4858–4867 (2007)

    Google Scholar 

  101. Kim, J.H., Fang, F.F., Choi, H.J., Seo, Y.: Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology. Mater. Lett. 62(17), 2897–2899 (2008)

    Google Scholar 

  102. Hajalilou, A., Mazlan, S.A., Shila, S.T.: Magnetic carbonyl iron suspension with Ni-Zn ferrite additive and its magnetorheological properties. Mater. Lett. 181, 196–199 (2016)

    Google Scholar 

  103. Fang, C., Zhao, B.Y., Chen, L.S., Wu, Q., Liu, N., Hu, K.A.: The effect of the green additive guar gum on the properties of magnetorheological fluid, Smart Mater. Struct. 14(1), N1–N5 (2004)

    Google Scholar 

  104. Lee, S., Shin, K., Jang, J.: Enhanced magnetorheological performance of highly uniform magnetic carbon nanoparticles. Nanoscale 7(21), 9646–9654 (2015)

    Google Scholar 

  105. Jang, D.S., Liu, Y.D., Kim, J.H.: Enhanced magnetorheology of soft magnetic carbonyl iron suspension with hard magnetic γ-Fe2O3 nanoparticle additive. Colloid Polym. Sci. 293(2), 641–647 (2015)

    Google Scholar 

  106. Lim, S.T., Choi, H.J., Jhon, M.S.: Magnetorheological characterization of carbonyl iron-organoclay suspensions. IEEE Trans. Magn. 41(10), 3745–3747 (2005)

    Google Scholar 

  107. López-López, M.T., Kuzhir, P., Bossis, G., Mingalyov, P.: Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their magnetorheological properties. Rheol. Acta 47(7), 787–796 (2008)

    Google Scholar 

  108. Park, B.J., Fang, F.F., Choi, H.J.: Magnetorheology: materials and application. Soft Matter 6(21), 5246–5253 (2010)

    Google Scholar 

  109. Fang, F.F., Choi, H.J.: Polymeric nanobead coated carbonyl iron particles and their magnetic property. Phys. Status Solidi (a) 204(12), 4190–4193 (2007)

    Google Scholar 

  110. Choi, H.J., Park, B.J., Cho, M.S., You, J.L.: Core-shell structured poly (methyl methacrylate) coated carbonyl iron particles and their magnetorheological characteristics. J. Magn. Magn. Mater. 310(2), 2835–2837 (2007)

    Google Scholar 

  111. Choi, J.S., Park, B.J., Cho, M.S., Choi, H.J.: Preparation and magnetorheological characteristics of polymer coated carbonyl iron suspensions. J. Magn. Magn. Mater. 304(1), 374–376 (2006)

    Google Scholar 

  112. Sedlacik, M., Pavlinek, V., Saha, P., Svrcinova, P., Filip, P.: Polymer coated carbonyl iron particles and their magnetorheological suspensions. In: Proceedings of the 4th WSEAS International Conference on Energy and Development-Environment-Biomedicine, pp. 289–293. World Scientific and Engineering Academy and Society (WSEAS) (2011)

    Google Scholar 

  113. You, J.L., Park, B.J., Choi, H.J.: Magnetorheological Characteristics of Carbonyl Iron Embedded Suspension Polymerized Poly (Methyl Methacrylate) Micro-Bead. IEEE Trans. Magn. 44(11), 3867–3870 (2008)

    Google Scholar 

  114. Park, B.J., Kim, M.S., Choi, H.J.: Fabrication and magnetorheological property of core/shell structured magnetic composite particle encapsulated with cross-linked poly (methyl methacrylate). Mater. Lett. 63(24), 2178–2180 (2009)

    Google Scholar 

  115. Hong, M.K., Park, B.J., Choi, H.J.: Preparation and physical characterization of polyacrylamide coated magnetite particles. Phys. Status Solidi (a) 204(12), 4182–4185 (2007)

    Google Scholar 

  116. Kim, Y.H., Park, B.J., Choi, H.J., Seo, Y.: Coating of magnetic particle with polystyrene and its magnetorheological characterization. Phys. Status Solidi 204, 4178 (2007)

    Google Scholar 

  117. Park, B.J., You, J.L., Choi, H.J., Park, S.Y., Lee, B.Y.: Magnetics. Synthesis and magnetorheological characterization of magnetite nanoparticle and poly (vinyl butyral) composite. IEEE Trans. Magn. 45(6), 2460–2463 (2009)

    Google Scholar 

  118. Munoz, B.C., Adams, G.W., Ngo, V.T., Kitchin, J.R.: Stable Magnetorheological Fluids. US Patent 6,203,717 (2001)

    Google Scholar 

  119. Chaudhuri, A., Wang, G., Wereley, N.M., Tasovksi, V., Radhakrishnan, R.: Substitution of micron by nanometer scale powders in magnetorheological fluids. Int. J. Mod. Phys. B 19(07–09), 1374–1380 (2005)

    Google Scholar 

  120. Mendoza, M.E., Donado, F., Silva, R., Pérez, M.A., Carrillo, J.L.: Magnetite microcrystals for magneto-rheological fluids. J. Phys. Chem. Solids 66, 927–931 (2005)

    Google Scholar 

  121. NazarzadehZare, E., Lakouraj, M.M., Baghayeri, M.: Electro-Magnetic Polyfuran/Fe3O4 Nanocomposite: Synthesis, characterization, antioxidant activity, and its application as a biosensor. Int. J. Polym. Mater. Polym. Biomater. 64, 175–183 (2015)

    Google Scholar 

  122. Sedlacik, M., Moucka, R., Kozakova, Z., Kazantseva, N.E., Pavlinek, V., Kuritka, I., Kaman, O., Peer, P.: Correlation of structural and magnetic properties of Fe3O4 nanoparticles with their calorimetric and magnetorheological performance. J. Magn. Magn. Mater. 326, 7–13 (2013)

    Google Scholar 

  123. Wei, J.H., Leng, C.J., Zhang, X.Z., Li, W.H., Liu, Z.Y., Shi, J.: Synthesis and magnetorheological effect of Fe3O4-TiO2 nanocomposite. J. Phys. Conf. Ser. 149, 012083 (2009)

    Google Scholar 

  124. Chen, H.J., Wang, Y.M., Qu, J.M., Hong, R.Y., Li, H.Z.: Preparation and characterization of silicon oil based ferrofluid. Appl. Surf. Sci. 257(24), 10802–10807 (2011)

    Google Scholar 

  125. Weiss, K.D., Carlson, D.J., Duclos, T.G., Abbey, K.J.: Temperature Independent Magnetorheological Materials. US Patent No. 5,599,474 (1997)

    Google Scholar 

  126. Premalatha, S.E., Chokkalingam, R., Mahendran, M.: Magneto mechanical properties of iron based MR fluids. Am. J. Polym. Sci. 2(4), 50–55 (2012)

    Google Scholar 

  127. Kumbhar, B.K., Patil, S.R.: A Study on Properties and Selection Criteria for Magneto rheological (MR) Fluid Components. Int. J. ChemTech Res. 6(6), 3303–3306 (2014)

    Google Scholar 

  128. Fang, F.F., Kim, J.H., Choi, H.J.: Synthesis of core–shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer 50, 2290–2293 (2009)

    Google Scholar 

  129. Kim, M.S., Liu, Y.D., Park, B.J., You, C.Y., Choi, H.J.: Carbonyl iron particles dispersed in a polymer solution and their rheological characteristics under applied magnetic field. J. Ind. Eng. Chem. 18, 664–667 (2012)

    Google Scholar 

  130. Rodriguez-Arco, L., Gomez-Ramirez, A., Duran, J.D.G., Lopez-Lopez, M.T.: New Perspectives for Magnetic Fluid-Based Devices Using Novel Ionic Liquids as Carriers, INTECH, Smart Actuation and Sensing Systems-Recent Advances and Future Challenges, pp. 445–464. INTECH Open Access Publisher (2012)

    Google Scholar 

  131. Guerrero-Sanchez, C., Lara-Ceniceros, T., Jimenez-Regalado, E., Rasa, M., Schubert, U.S.: Magnetorheological fluids based on ionic liquids. Adv. Mater. 19, 1740–1747 (2007)

    Google Scholar 

  132. Zhang, X., Li, W., Gong, X.: Thixotropy of MR shear-thickening fluids. Smart Mater. Struct. 19, 125012 (2010)

    Google Scholar 

  133. Cheng, H.B., Wang, J.M., Zhang, Q.J., Wereley, N.M.: Preparation of composite magnetic particles and aqueous magnetorheological fluids. Smart Mater. Struct. 18, 085009 (2009)

    Google Scholar 

  134. Carlson, J.D.: MR fluids and devices in the real world. Int. J. Mod. Phys. B 19(07–09), 1463–1470 (2005)

    Google Scholar 

  135. Bombard, A.J.F., Antunes, L.S., Gouvea, D.: Redispersibility in magnetorheological fluids: Surface interactions between iron powder and wetting additives. J. Phys. Conf. Ser. 149, 012038 (2009)

    Google Scholar 

  136. Bossis, G., Lacisb, S., Meuniera, A., Volkova, O.: Magnetorheological fluids, J. Magn. Magn. Mater. 252, 224–228 (2002)

    Google Scholar 

  137. Iyengar, V.R., Yurgelevic, S., Foister, R.T.: Magnetorheological Fluid with a Fluorocarbon Thickener. US Patent No. 7,731,863 B2 (2010)

    Google Scholar 

  138. Foister, R.T., Iyengar, V.R., Yurgelevic, S.M.: Stabilization of Magnetorheological Fluid Suspensions Using a Mixture of Organoclays. US Patent No. 6,592,772 B2 (2003)

    Google Scholar 

  139. Hato, M.J., Choi, H.J., Sim, H.H., Park, B.O., Ray, S.S.: Magnetic carbonyl iron suspension with organoclay additive and its magnetorheological properties. Colloids Surf. A Physicochem. Eng. Asp. 377(1), 103–109 (2011)

    Google Scholar 

  140. Carlson, J.D.: Aqueous magnetorheological material Lord Corporation, US Patent No. 6,132,633 (2000)

    Google Scholar 

  141. Iyengar, V.R., Foister, R.T.: Use of High Surface Area Untreated Fumed Silica in MR Fluid Formulation. US Patent No. 6,451,219 B1 (2002)

    Google Scholar 

  142. Rich, J. P., Doyle, P.S., McKinley, G.H.: Magnetorheology in an aging, yield stress matrix fluid. Rheol. Acta, 51(7), 579–593, (2012).

    Google Scholar 

  143. Ashtiani M., Hashemabadi S.H.: An experimental study on the effect of fatty acid chain length on the magnetorheological fluid stabilization and rheological properties. Colloids Surf. A Physicochem. Eng. Asp. 469, 29–35 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdollah Hajalilou , Saiful Amri Mazlan , Hossein Lavvafi or Kamyar Shameli .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd

About this chapter

Cite this chapter

Hajalilou, A., Amri Mazlan, S., Lavvafi, H., Shameli, K. (2016). Magnetorheological (MR) Fluids. In: Field Responsive Fluids as Smart Materials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-2495-5_3

Download citation

Publish with us

Policies and ethics