Skip to main content

Diversity in Pathology and Genomics in Ovarian Cancer

  • Chapter
  • First Online:
  • 800 Accesses

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

Abstract

Epithelial ovarian cancer comprises of various histologic subtypes including high-grade serous, clear cell, endometrioid, mucinous, and low-grade serous carcinoma. Differences in histologic subtypes reflect distinct biological and clinical features. Recent progress on cancer genome analyses using the rapidly developing sequencing technologies has unveiled molecular background of ovarian cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  Google Scholar 

  2. Verhaak RG, Tamayo P, Yang JY, et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123:517–25.

    CAS  PubMed  Google Scholar 

  3. Murakami R, Matsumura N, Brown JB, et al. Prediction of taxane and platinum sensitivity in ovarian cancer based on gene expression profiles. Gynecol Oncol. 2016;141:49–56.

    Article  CAS  PubMed  Google Scholar 

  4. Murakami R, Matsumura N, Mandai M, et al. Establishment of a novel histopathological classification of high-grade serous ovarian carcinoma correlated with prognostically distinct gene expression subtypes. Am J Pathol. 2016;186:1103–13.

    Article  CAS  PubMed  Google Scholar 

  5. Perren TJ, Swart AM, Pfisterer J, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–96.

    Article  CAS  PubMed  Google Scholar 

  6. Gourley C, McCavigan A, Perren T, et al. Molecular subgroup of high-grade serous ovarian cancer (HGSOC) as a predictor of outcome following bevacizumab. J Clin Oncol. 2014;32:5s. abstr5502.

    Google Scholar 

  7. Winterhoff BJN, Kommoss S, Oberg AL, et al. Bevacizumab and improvement of progression-free survival (PFS) for patients with the mesenchymal molecular subtype of ovarian cancer. J Clin Oncol. 2014;32:5s. abstr 5509.

    Google Scholar 

  8. Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489–94.

    Article  CAS  PubMed  Google Scholar 

  9. Risch HA, McLaughlin JR, Cole DE, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet. 2001;68:700–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005;104:2807–16.

    Article  CAS  PubMed  Google Scholar 

  11. Moschetta M, George A, Kaye SB, Banerjee S. BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol. 2016;27(8):1449–55.

    Article  CAS  PubMed  Google Scholar 

  12. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  CAS  PubMed  Google Scholar 

  13. Audeh MW, Carmichael J, Penson RT, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010;376:245–51.

    Article  CAS  PubMed  Google Scholar 

  14. Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014;15:852–61.

    Article  CAS  PubMed  Google Scholar 

  15. Gelmon KA, Tischkowitz M, Mackay H, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12:852–61.

    Article  CAS  PubMed  Google Scholar 

  16. Michels J, Vitale I, Saparbaev M, et al. Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene. 2014;33:3894–907.

    Article  CAS  PubMed  Google Scholar 

  17. Willers H, Taghian AG, Luo CM, et al. Utility of DNA repair protein foci for the detection of putative BRCA1 pathway defects in breast cancer biopsies. Mol Cancer Res. 2009;7:1304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Graeser M, McCarthy A, Lord CJ, et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2010;16:6159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mukhopadhyay A, Elattar A, Cerbinskaite A, et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly (ADP-ribose) polymerase inhibitors. Clin Cancer Res. 2010;16:2344–51.

    Article  CAS  PubMed  Google Scholar 

  20. Redon CE, Nakamura AJ, Zhang YW, et al. Histone gammaH2AX and poly (ADPribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res. 2010;16:4532–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watkins JA, Irshad S, Grigoriadis A, Tutt AN. Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res. 2014;16:211.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yamaguchi K, Mandai M, Toyokuni S, et al. Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin Cancer Res. 2008;14:32–40.

    Article  CAS  PubMed  Google Scholar 

  23. Yamaguchi K, Mandai M, Oura T, et al. Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene. 2010;29:1741–52.

    Article  CAS  PubMed  Google Scholar 

  24. Yamaguchi K, Huang Z, Matsumura N, et al. Epigenetic determinants of ovarian clear cell carcinoma biology. Int J Cancer. 2014;135:585–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okamoto T, Mandai M, Matsumura N, et al. Hepatocyte nuclear factor-1B (HNF-1B) promotes glucose uptake and glycolytic activity in ovarian clear cell carcinoma. Mol Carcinog. 2015;54:35–49.

    Article  CAS  PubMed  Google Scholar 

  26. Amano Y, Mandai M, Yamaguchi K, et al. Metabolic alterations caused by HNF1B expression in ovarian clear cell carcinoma contribute to cell survival. Oncotarget. 2015;6:26002–17.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Matsumura N, Mandai M, Okamoto T, et al. Sorafenib efficacy in ovarian clear cell carcinoma revealed by transcriptome profiling. Cancer Sci. 2010;101:2658–63.

    Article  CAS  PubMed  Google Scholar 

  28. Koshiyama M, Matsumura N, Baba T, et al. Two cases of recurrent ovarian clear cell carcinoma treated with sorafenib. Cancer Biol Ther. 2014;15:22–5.

    Article  CAS  PubMed  Google Scholar 

  29. Jones S, Wang TL, Shih IM, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330:228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363:1532–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuo KT, Mao TL, Jones S, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 2009;174:1597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamamoto S, Tsuda H, Takano M, et al. Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol. 2012;25:615–24.

    Article  CAS  PubMed  Google Scholar 

  33. Yamamoto S, Tsuda H, Takano M, et al. PIK3CA mutation is an early event in the development of endometriosis-associated ovarian clear cell adenocarcinoma. J Pathol. 2011;225:189–94.

    Article  CAS  PubMed  Google Scholar 

  34. Anglesio MS, Bashashati A, Wang YK, et al. Multifocal endometriotic lesions associated with cancer are clonal and carry a high mutation burden. J Pathol. 2015;236:201–9.

    Article  CAS  PubMed  Google Scholar 

  35. Chandler RL, Damrauer JS, Raab JR, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6:6118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu R, Hendrix-Lucas N, Kuick R, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell. 2007;11:321–33.

    Article  CAS  PubMed  Google Scholar 

  37. McConechy MK, Ding J, Senz J, et al. Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod Pathol. 2014;27:128–34.

    Article  CAS  PubMed  Google Scholar 

  38. Anglesio MS, Wang YK, Maassen M, et al. Synchronous endometrial and ovarian carcinomas: evidence of clonality. J Natl Cancer Inst. 2016;108:djv428.

    Article  PubMed  Google Scholar 

  39. Ryland GL, Hunter SM, Doyle MA, et al. Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors. Genome Med. 2015;7:87.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ryland GL, Hunter SM, Doyle MA, et al. RNF43 is a tumour suppressor gene mutated in mucinous tumours of the ovary. J Pathol. 2013;229:469–76.

    Article  CAS  PubMed  Google Scholar 

  41. Anglesio MS, Kommoss S, Tolcher MC, et al. Molecular characterization of mucinous ovarian tumours supports a stratified treatment approach with HER2 targeting in 19% of carcinomas. J Pathol. 2013;229:111–20.

    Article  CAS  PubMed  Google Scholar 

  42. Tafe LJ, Muller KE, Ananda G, et al. Molecular genetic analysis of ovarian Brenner tumors and associated mucinous epithelial neoplasms. High variant concordance and identification of mutually exclusive RAS driver mutations and MYC amplification. Am J Pathol. 2016;186:671–7.

    Article  CAS  PubMed  Google Scholar 

  43. Jones S, Wang TL, Kurman RJ, et al. Low-grade serous carcinomas of the ovary contain very few point mutations. J Pathol. 2012;226:413–20.

    Article  CAS  PubMed  Google Scholar 

  44. Hunter SM, Anglesio MS, Ryland GL, et al. Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes. Oncotarget. 2015;6:37663–6677.

    PubMed  PubMed Central  Google Scholar 

  45. Witkowski L, Carrot-Zhang J, Albrecht S, et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet. 2014;46:438–43.

    Article  CAS  PubMed  Google Scholar 

  46. Fahiminiya S, Witkowski L, Nadaf J, et al. Molecular analyses reveal close similarities between small cell carcinoma of the ovary, hypercalcemic type and atypical teratoid/rhabdoid tumor. Oncotarget. 2016;7:1732–40.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriomi Matsumura M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Matsumura, N. (2017). Diversity in Pathology and Genomics in Ovarian Cancer. In: Konishi, I. (eds) Precision Medicine in Gynecology and Obstetrics. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2489-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2489-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2488-7

  • Online ISBN: 978-981-10-2489-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics