Stimuli-Responsive Structure Control of Self-Assembled Gold Nanoparticles

Chapter

Abstract

Metal nanostructures have attracted a great deal of attention as components of functional materials, and there is a great demand for the development of functional devices composed of these metal nanostructures. In particular, the fabrication of metal nanostructures with dynamic structure control by external stimuli is a major focus. In this chapter, several studies related to “the stimuli-responsive structure control of metal nanostructures” will be introduced, with a particular focus on our own research. Our fabrication strategy is based on self-organization by controlling the surface properties of nanoparticles and tuning their self-assembly through the design and synthesis of surface-modifying ligands. When gold nanoparticles (AuNPs) were modified with fluorinated tetra(ethylene glycol) derivatives, the AuNPs could spontaneously form a well-packed thin film during the drying process or hollow capsules in THF solutions. The AuNP thin film could be transferred onto hydrogel and the intervals in the AuNP array tuned by changes in the size of the gel. One of the potential applications of this tunable plasmonic structure is in sensing devices using surface-enhanced Raman scattering (SERS). This control of the gap distance in the AuNP assembly could effectively work in the SERS detection of proteins, the signal of which was enhanced more than 10-fold in comparison with that of a conventional system. AuNP capsules were cross-linked with PEG to improve the stability of the capsules in water and to give thermo-responsiveness. Cross-linked AuNP capsules showed a rapid response upon light irradiation, suggesting that they have potential applications as a drug delivery carrier with a controlled release function triggered by light.

Keywords

Gold nanoparticles Self-assembly Active control Plasmon Surface-enhanced Raman scattering Stimuli-responsive Drug delivery system Smart nanodevice 

References

  1. 1.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(80):720–731Google Scholar
  2. 2.
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166CrossRefGoogle Scholar
  3. 3.
    Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492CrossRefGoogle Scholar
  4. 4.
    Lee SH, Dominguez R (2010) Regulation of actin cytoskeleton dynamics in cells. Mol Cells 29:311–325CrossRefGoogle Scholar
  5. 5.
    Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592CrossRefGoogle Scholar
  6. 6.
    Nie Z, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5:15–25CrossRefGoogle Scholar
  7. 7.
    Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8:247–251CrossRefGoogle Scholar
  8. 8.
    Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanueva-Potel P, Carbó-Argibay E, Pazos-Pérez N, Vigderman L, Zubarev ER, Kotov NA, Liz-Marzán LM (2011) Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc Natl Acad Sci USA 108:8157–8161CrossRefGoogle Scholar
  9. 9.
    Han X, Liu Y, Yin Y (2014) Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett 14:2466–2470CrossRefGoogle Scholar
  10. 10.
    Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605CrossRefGoogle Scholar
  11. 11.
    Iida R, Kawamura H, Niikura K, Kimura T, Sekiguchi S, Joti Y, Bessho Y, Mitomo H, Nishino Y, Ijiro K (2015) Synthesis of Janus-like gold nanoparticles with hydrophilic/hydrophobic faces by surface ligand exchange and their self-assemblies in water. Langmuir 31:4054–4062CrossRefGoogle Scholar
  12. 12.
    Nishio T, Niikura K, Matsuo Y, Ijiro K (2010) Self-lubricating nanoparticles: self-organization into 3D-superlattices during a fast drying process. Chem Commun (Camb) 46:8977–8979CrossRefGoogle Scholar
  13. 13.
    Niikura K, Iyo N, Higuchi T, Nishio T, Jinnai H, Fujitani N, Ijiro K (2012) Gold nanoparticles coated with semi-fluorinated oligo(ethylene glycol) produce sub-100 nm nanoparticle vesicles without templates. J Am Chem Soc 134:7632–7635CrossRefGoogle Scholar
  14. 14.
    Mitomo H, Horie K, Matsuo Y, Niikura K, Tani T, Naya M, Ijiro K (2016) Active gap SERS for the sensitive detection of biomacromolecules with plasmonic nanostructures on hydrogels. Adv Opt Mater 4:259–263Google Scholar
  15. 15.
    Niikura K, Iyo N, Matsuo Y, Mitomo H, Ijiro K (2013) Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl Mater Interfaces 5:3900–3907CrossRefGoogle Scholar
  16. 16.
    Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556CrossRefGoogle Scholar
  17. 17.
    Nykypanchuk D, Maye MM, van der Lelie D, Gang O (2008) DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–552CrossRefGoogle Scholar
  18. 18.
    Achermann M, Petruska MA, Crooker SA, Klimov VI (2003) Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies. J Phys Chem B 107:13782–13787CrossRefGoogle Scholar
  19. 19.
    Kanehara M, Kodzuka E, Teranishi T (2006) Self-assembly of small gold nanoparticles through interligand interaction. J Am Chem Soc 128:13084–13094CrossRefGoogle Scholar
  20. 20.
    Lin MH, Chen HY, Gwo S (2010) Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties. J Am Chem Soc 132:11259–11263CrossRefGoogle Scholar
  21. 21.
    Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying-mediated self-assembly of nanoparticles. Nature 426:271–274CrossRefGoogle Scholar
  22. 22.
    Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466:474–477CrossRefGoogle Scholar
  23. 23.
    Fujita M, Nishikawa H, Okubo T, Yamaguchi Y (2004) Multiscale simulation of two-dimensional self-organization of nanoparticles in liquid film. Japanese J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 43:4434–4442Google Scholar
  24. 24.
    Hu M, Chujo S, Nishikawa H, Yamaguchi Y, Okubo T (2004) Spontaneous formation of large-area monolayers of well-ordered nanoparticles via a wet-coating process. J Nanopart Res 6:479–487CrossRefGoogle Scholar
  25. 25.
    Yonezawa T, Onoue S, Kimizuka N (2001) Self-organized superstructures of fluorocarbon-stabilized silver nanoparticles. Adv Mater 13:140–142CrossRefGoogle Scholar
  26. 26.
    Schweizer DK, Eigler EK (1990) Positioning single atoms with a scanning tunneling microscop. Nature 344:524–525CrossRefGoogle Scholar
  27. 27.
    Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379CrossRefGoogle Scholar
  28. 28.
    Shimamoto N, Tanaka Y, Mitomo H, Kawamura R, Ijiro K, Sasaki K, Osada Y (2012) Nanopattern fabrication of gold on hydrogels and application to tunable photonic crystal. Adv Mater 24:5243–5248CrossRefGoogle Scholar
  29. 29.
    Chen H, Ming T, Zhao L, Wang F, Sun L-D, Wang J, Yan C-H (2010) Plasmon–molecule interactions. Nano Today 5:494–505CrossRefGoogle Scholar
  30. 30.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  31. 31.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostruct Plasmonic Sens 494–521Google Scholar
  32. 32.
    Wang G, Mitomo H, Matsuo Y, Shimamoto N, Niikura K, Ijiro K (2013) DNA-templated plasmonic Ag/AgCl nanostructures for molecular selective photocatalysis and photocatalytic inactivation of cancer cells. J Mater Chem B 1:5899CrossRefGoogle Scholar
  33. 33.
    Tian Z, Ren B, Wu D (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough. J Phys Chem 106:9463–9483CrossRefGoogle Scholar
  34. 34.
    Yokota Y, Ueno K, Misawa H (2011) Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles. Chem Commun (Camb) 47:3505–3507CrossRefGoogle Scholar
  35. 35.
    Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885CrossRefGoogle Scholar
  36. 36.
    Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48CrossRefGoogle Scholar
  37. 37.
    Yoo J-W, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535CrossRefGoogle Scholar
  38. 38.
    Song J, Cheng L, Liu A, Yin J, Kuang M, Duan H (2011) Plasmonic vesicles of amphiphilic gold nanocrystals: self-assembly and external-stimuli-triggered destruction. J Am Chem Soc 133:10760–10763CrossRefGoogle Scholar
  39. 39.
    Nikolic MS, Olsson C, Saldier A, Kornowski A, Rank A, Schubert R, Frömsdorf A, Weller H, Förster S (2009) Micelle and vesicle formation of amphiphilic nanoparticles. Angew Chem Int Ed 48:2752–2754CrossRefGoogle Scholar
  40. 40.
    Nie Z, Fava D, Kumacheva E, Zou S, Walker GC, Rubinstein M (2007) Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nat Mater 6:609–614CrossRefGoogle Scholar
  41. 41.
    Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318Google Scholar
  42. 42.
    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823CrossRefGoogle Scholar
  43. 43.
    Bjorling M, Karlstrom G, Linse P (1991) Conformatlonal adaptlon of Poly(ethylene oxide). J Phys Chem 95:6706–6709CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Hideyuki Mitomo
    • 1
  • Kenichi Niikura
    • 1
  • Kuniharu Ijiro
    • 1
  1. 1.Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan

Personalised recommendations