Skip to main content

Calcium Desensitization Mechanism and Treatment for Vascular Hyporesponsiveness After Shock

  • Chapter
  • First Online:
Advanced Trauma and Surgery
  • 1213 Accesses

Abstract

Shock, the common pathological process of many critical illnesses, is often accompanied by vascular hyporeactivity, which severely interferes with the development and treatment of shock and other critical conditions, especially interferes with the application of vasoactive agents. So, it is very important to shed light on the mechanisms and search for the effective measures. Lots of studies focused on the characteristics of vascular hyporeactivity and mechanisms following shock in recent years. Since the limitation of previous mechanisms for vascular hyporesponsiveness (receptor desensitization mechanism and membrane hyperpolarization mechanism), our research group raised calcium desensitization mechanism for vascular hyporesponsiveness after shock and proposed pertinent treatment measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Julie BH, Helene K, Valerie SK, Ferhat M. Endothelial dysfunction in sepsis. Curr Vasc Pharmacol. 2013;11:150–60.

    Google Scholar 

  2. Zhao ZG, Niu CY, Wei YL, Zhang YP, Si YH, Zhang J. Mesenteric lymph return is an important contributor to vascular hyporesponsiveness and calcium desensitization after hemorrhagic shock. Shock. 2012;38:186–95.

    Article  CAS  PubMed  Google Scholar 

  3. Li T, Liu LM, Xu J, Yang GM, Ming J. Changes of Rho kinase activity after hemorrhagic shock and its role in shock-induced biphasic response of vascular reactivity and calcium sensitivity. Shock. 2006;26:504–9.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou R, Ding XL. Liu LM:Ryanodine receptor 2 contributes to hemorrhagic shock- induced bi-phasic vascular reactivity in rats. Acta Pharmacol Sin. 2014;35:1375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang GM, Li T, Xu J, Peng XY, Liu LM. Mitogen-activated protein kinases regulate vascular reactivity after hemorrhagic shock through myosin light chain phosphorylation pathway. J Trauma Acute Care Surg. 2013;74:1033–43.

    Article  CAS  PubMed  Google Scholar 

  6. Pagnin E, Semplicini A, Sartori M, Pessina AC, Calo LA. Reduced mRNA and protein content of rho guanine nucleotide exchange factor (RhoGEF) in Bartter’s and Gitelman’s syndromes: relevance for the pathophysiology of hypertension. Am J Hypertens. 2005;18:1200–5.

    Article  CAS  PubMed  Google Scholar 

  7. Li T, Fang Y, Yang GM, Zhu Y, Xu J, Liu LM. The mechanism by which RhoA regulates vascular reactivity after hemorrhagic shock in rats. Am J Physiol Heart Circ Physiol. 2010;299:292–9.

    Article  CAS  Google Scholar 

  8. Li T, Fang Y, Yang GM, Xu J, Zhu Y, Liu LM. Effects of the balance in activity of RhoA and Rac1 on the shock-induced biphasic change of vascular reactivity in rats. Ann Surg. 2011;253:185–93.

    Article  PubMed  Google Scholar 

  9. Burridge K, Krister W. Rho and Rac take center stage. Cell. 2004;116:167–79.

    Article  CAS  PubMed  Google Scholar 

  10. Brzeska H, Szczepanowska J, Matsumura F, Korn ED. Rac-induced increase of phosphorylation of myosin regulatory light chain in HeLa cells. Cell Motil Cytoskeleton. 2004;58:186–99.

    Article  CAS  PubMed  Google Scholar 

  11. Xu J, Lan D, Li T, Yang GM, Liu LM. Angiopoietins regulate vascular reactivity after haemorrhagic shock in rats through the Tie2-nitric oxide pathway. Cardiovasc Res. 2012;96:308–19.

    Article  CAS  PubMed  Google Scholar 

  12. Liu LM, War JA, Dubick MA. Hemorrhage-induced vascular hyporesponsiveness to norepinephrine in select vasculatures of rats and the roles of nitric oxide and endothelin. Shock. 2003;19:208–14.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Y, Liu L, Peng X, Ding X, Yang G, Li T. Role of adenosine A2A receptor in organ-specific vascular reactivity following hemorrhagic shock in rats. J Surg Res. 2013;184:951–8.

    Article  CAS  PubMed  Google Scholar 

  14. Liu LM, Dubick MA. Hemorrhagic shock-induced vascular hyporesponsiveness in the rat: relationship to gene expression of nitric oxide synthase, endothelin-1, and select cytokines in corresponding organs. J Surg Res. 2005;125:128–36.

    Article  CAS  PubMed  Google Scholar 

  15. Maas JJ, Wilde EB, Aarts LP, Pinsky MR, Jansen JR. Determination of vascular waterfall phenomenon by bedside measurement of mean systemic filling pressure and critical closing pressure in the intensive care unit. Anesth Analg. 2012;114:803–10.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martin CM, Yaghi A, Sibbald WJ, McCormack D, Paterson NA. Differential impairment of vascular reactivity of small pulmonary and systemic arteries in hyperdynamic sepsis. Am Rev Respir Dis. 1993;148:164–72.

    Article  CAS  PubMed  Google Scholar 

  17. Demirtas T, Utkan T, Karson A, Yazir Y, Bayramgurler D, Gacar N. The link between unpredictable chronic mild stress model for depression and vascular inflammation? Inflammation. 2014;37:1432–8.

    Article  CAS  PubMed  Google Scholar 

  18. Fang Y, Li T, Fan X, Zhu Y, Liu LM. Beneficial effects of activation of PKC on hemorrhagic shock in rats. J Trauma. 2010;68:865–73.

    CAS  PubMed  Google Scholar 

  19. Liang JL, Yang GM, Li T, Liu LM. Effects of interleukin-1beta on vascular reactivity after lipopolysaccharide-induced endotoxic shock in rabbits and its relationship with PKC and Rho kinase. J Cardiovasc Pharmacol. 2013;62:84–9.

    Article  CAS  PubMed  Google Scholar 

  20. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78:539–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Angele MK, Frantz MC, Chaudry IH. Gender and sex hormones influence the response to trauma and sepsis: potential therapeutic approaches. Clinics (Sao Paulo). 2006;61:479–88.

    Article  Google Scholar 

  22. Angele MK, Pratschke S, Hubbard WJ, Chaudry IH. Gender differences in sepsis: cardiovascular and immunological aspects. Virulence. 2014;5:12–9.

    Article  PubMed  Google Scholar 

  23. Frink M, Pape HC, Griensven MV, Krettek C, Chaudry IH, Hildebrand F. Influence of sex and age on mods and cytokines after multiple injuries. Shock. 2007;27:151–6.

    Article  CAS  PubMed  Google Scholar 

  24. Proctor DN, Newcomer SC. Is there a difference in vascular reactivity of the arms and legs? Med Sci Sports Exerc. 2006;38:1819–28.

    Article  PubMed  Google Scholar 

  25. Li T, Xiao XD, Zhang J, Zhu Y, Hu Y, Zang JT, Lu K, Yang T, Ge H, Peng XY, Lan D, Liu LM. Age and sex differences in vascular responsiveness in healthy and trauma patients: contribution of estrogen receptor-mediated Rho kinase and PKC pathways. Am J Physiol Heart Circ Physiol. 2014;306:1105–15.

    Article  CAS  Google Scholar 

  26. Soriano FG, Liaudet L, Marton A, Hasko G, Lorigados CB, Deitch EA, Szabo C. Inosine improves gut permeability and vascular reactivity in endotoxic shock. Crit Care Med. 2001;29:703–8.

    Article  CAS  Google Scholar 

  27. Yang GM, Liu LM, Xu J. Li Tao: Effect of arginine vasopressin on vascular reactivity and calcium sensitivity after hemorrhagic shock in rats and its relationship to Rho-kinase. J Trauma. 2006;61:1336–42.

    Article  CAS  PubMed  Google Scholar 

  28. Hernanz R, Alonso MJ, Briones AM, Vila E, Simonsen U, Salaices M. Mechanisms involved in the early increase of serotonin contraction evoked by endotoxin in rat middle cerebral arteries. Br J Pharmacol. 2003;140:671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robert R, Derrode CC, Carretier M, Mauco G, Silvain C. Gender differences in vascular reactivity of aortas from rats with and without portal hypertension. J Gastroenterol Hepatol. 2005;20:890–4.

    Article  PubMed  Google Scholar 

  30. Chen W, Ming J, Xu J, Yang GM, Liu LM. Changes and organ diversity of vascular reactivity following endotoxic shock in rabbits (article in Chinese). J Trauma Surg. 2009;11:348–53.

    Google Scholar 

  31. Liang JL, Yang GM, Li T, Liu LM. Interleukin 1β attenuates vascular α1 adrenergic receptors expression following lipopolysaccharide-induced endotoxemia in rabbits: involvement of JAK2-STAT3 pathway. J Trauma Acute Care Surg. 2014;76:762–770.

    Google Scholar 

  32. Wiel E, Lebuffe G, Robin E, Gasan G, Corseaux D, Tavernier B, Jude B, Bordet R, Vallet B. Pretreatment with peroxysome proliferator-activated receptor alpha agonist fenofibrate protects endothelium in rabbit Escherichia coli endotoxin-induced shock. Intensive Care Med. 2005;31:1269–79.

    Article  PubMed  Google Scholar 

  33. George RL, McGwin G, Windham ST, Melton SM, Metzger J, Chaudry IH, Rue LW. Age-related gender differential in outcome after blunt or penetrating trauma. Shock. 2003;19:28–32.

    Article  PubMed  Google Scholar 

  34. Kher A, Wang M, Tsai BM, Pitcher JM, Greenbaum ES, Nagy RD, Patel KM, Wairiuko GM, Markel TA, Meldrum DR. Sex differences in the myocardial inflammatory response to acute injury. Shock. 2005;23:1–10.

    Article  PubMed  Google Scholar 

  35. Bone RC. Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA. 1992;268:3452–5.

    Article  CAS  PubMed  Google Scholar 

  36. Schroder J, Kahlke V, Staubach KH, Zabel P, Stuber F. Gender differences in human sepsis. Arch Surg. 1998;133:1200–5.

    Article  CAS  PubMed  Google Scholar 

  37. Liu LM, Hu DY, Chen HS. Advances of the desensitization of adrenergic receptors during circulatory shock (article in Chinese). Chin J Pathophysiol. 1998;14:100–3.

    CAS  Google Scholar 

  38. Sandrini M, Guarini S, Bertolini A. Characteristics of brain, heart ventricle and spleen capsule adrenoceptors in rats bled to hypovolemic shock and treated with ACTH-(1-24). Resuscitation. 1989;18:135–7.

    Article  CAS  PubMed  Google Scholar 

  39. Onuma T. Changes in the beta-receptor density and its responsiveness to beta-agonist in rabbit myocardium during hemorrhagic shock. Masui. 1994;43:840–7.

    CAS  PubMed  Google Scholar 

  40. Tait SM, Wang P, Ba ZF, Chaudry IH. Downregulation of hepatic beta-adrenergic receptors after trauma and hemorrhagic shock. Am J Physiol. 1995;268:749–53.

    Google Scholar 

  41. Maisel AS, Motulsky HJ, Ziegler MG, Insel PA. Ischemia- and agonist-induced changes in alpha- and beta-adrenergic receptor traffic in guinea pig hearts. Am J Physiol. 1987;253:1159–66.

    Google Scholar 

  42. Shepherd RE, Lang CH, McDonough KH. Myocardial adrenergic responsiveness after lethal and nonlethal doses of endotoxin. Am J Physiol. 1987;252:410–6.

    Google Scholar 

  43. Liu LM, Chen HS, Hu DY, Liu RQ, Li JM, Zhang KY, Hao LY, Wang YP. Myocardial adrenoceptors sensitized by thyrotropin releasing hormone and its mechanisms during hemorrhagic shock in rats (article in Chinese). Chin J Pharmacol Toxicol. 1995;9:212–5.

    CAS  Google Scholar 

  44. Quast U. Potassium channel openers: pharmacological and clinical aspects. Fundam Clin Pharmacol. 1992;6:279–93.

    Article  CAS  PubMed  Google Scholar 

  45. Liu J, Zhao K. The ATP-sensitive K(+) channel and membrane potential in the pathogenesis of vascular hyporesponsiveness in severe hemorrhagic shock. Chin J Traumatol. 2000;3:39–44.

    CAS  PubMed  Google Scholar 

  46. Horinaka S. Use of nicorandil in cardiovascular disease and its optimization. Drugs. 2011;71:1105–19.

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Zhao KS, Jin CH. Effect of intracellular acidosis on ATP-sensitive K + channels in arteriolar smooth muscle cells (article in Chinese). Chin J Pathophysiol. 1999;15:11–4.

    Google Scholar 

  48. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995;270:633–7.

    Article  CAS  PubMed  Google Scholar 

  49. Munujos P, Knaus HG, Kaczorowski GJ, Garcia ML. Cross-linking of charybdotoxin to high-conductance calcium-activated potassium channels: identification of the covalently modified toxin residue. Biochemistry. 1995;34:10771–6.

    Article  CAS  PubMed  Google Scholar 

  50. Xu J, Liu L. The role of calcium desensitization in vascular hyporesponsiveness and its regulation after hemorrhagic shock in the rat. Shock. 2005;23:576–81.

    CAS  PubMed  Google Scholar 

  51. Schmitz U, Thommes K, Beier I, Wagner W, Sachinidis A, Dusing R, Vetter H. Angiotensin II-induced stimulation of p21-activated kinase and c-Jun NH2-terminal kinase is mediated by Rac1 and Nck. J Biol Chem. 2001;276:22003–10.

    Article  CAS  PubMed  Google Scholar 

  52. Doupis J, Rahangdale S, Gnardellis C, Pena SE, Malhotra A, Veves A. Effects of diabetes and obesity on vascular reactivity, inflammatory cytokines, and growth factors. Obesity (Silver Spring). 2011;19:729–35.

    Article  CAS  Google Scholar 

  53. Zhao K, Liu J, Jin C. The role of membrane potential and calcium kinetic changes in the pathogenesis of vascular hyporesponsiveness during severe shock. Chin Med J (Engl). 2000;113:59–64.

    CAS  Google Scholar 

  54. Huang J, Mahavadi S, Sriwai W, Hu W, Murthy KS. Gi-coupled receptors mediate phosphorylation of CPI-17 and MLC20 via preferential activation of the PI3K/ILK pathway. Biochem J. 2006;396:193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barnett ME, Madgwick DK, Takemoto DJ. Protein kinase C as a stress sensor. Cell Signal. 2007;19:1820–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carter CA, Kane CJ. Therapeutic potential of natural compounds that regulate the activity of protein kinase C. Curr Med Chem. 2004;11:2883–902.

    Article  CAS  PubMed  Google Scholar 

  57. Annane D, Cavaillon JM. Corticosteroids in sepsis: from bench to bedside? Shock. 2003;20:197–207.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang T, Shi WL, Tasker JG, Zhou JR, Peng YL, Miao CY, Yang YJ, Jiang CL. Dexamethasone induces rapid promotion of norepinephrine–mediated vascular smooth muscle cell contraction. Mol Med Rep. 2013;7:549–554.

    Google Scholar 

  59. Laciolle B, Nesseler N, Massart C, Bellissant E. Fludrocortisone and hydrocortisone, alone or in combination, on in vivo hemodynamics and in vitro vascular reactivity in normal and endotoxemic rats: a randomized factorial design study. J Cardiovasc Pharmacol. 2013;63:488–96.

    Google Scholar 

  60. Woodsome TP, Eto M, Everett A, Brautigan DL, Kitazawa T. Expression of CPI-17 and myosin phosphatase correlates with Ca(2 +) sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol. 2001;535:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu J, Li T, Yang GM, Liu LM. Protein kinase C isoforms responsible for the regulation of vascular calcium sensitivity and their relationship to integrin-linked kinase pathway after hemorrhagic shock. J Trauma. 2010;69:1274–81.

    Article  CAS  PubMed  Google Scholar 

  62. Xu J, Yang GM, Li T, Ming J, Liu LM. Involvement of Cpi-17 and zipper-interacting protein kinase in the regulation of protein kinase C-alpha, protein kinase C-epsilon on vascular calcium sensitivity after hemorrhagic shock. Shock. 2010;33:49–55.

    Article  CAS  PubMed  Google Scholar 

  63. Hoefer J, Azam MA, Kroetsch JT, Poi HL, Momen MA, Bolz JV, Scherer EQ, Meissner A, Bolz SS, Husain M. Sphingosine-1-phosphate-dependent activation of p38 MAPK maintains elevated peripheral resistance in heart failure through increased myogenic vasoconstriction. Circ Res. 2010;107:923–33.

    Article  CAS  PubMed  Google Scholar 

  64. Matsumoto T, Kakami M, Kobayashi T, Kamata K. Gender differences in vascular reactivity to endothelin-1 (1-31) in mesenteric arteries from diabetic mice. Peptides. 2008;29:1146–338.

    Article  CAS  Google Scholar 

  65. Srinivas SP, Satpathy M, Gallagher P, Lariviere E, Driessche WV. Adenosine induces dephosphorylation of myosin II regulatory light chain in cultured bovine corneal endothelial cells. Exp Eye Res. 2004;79:543–51.

    Article  CAS  PubMed  Google Scholar 

  66. Lai EY, Martinka P, Fahling M, Mrowka R, Steege A, Gericke A, Sendeski M, Persson PB, Persson AE, Patzak A. Adenosine restores angiotensin II-induced contractions by receptor-independent enhancement of calcium sensitivity in renal arterioles. Circ Res. 2006;99:1117–24.

    Article  CAS  PubMed  Google Scholar 

  67. Tawfik HE, Schnermann J, Oldenburg PJ, Mustafa SJ. Role of A1 adenosine receptors in regulation of vascular tone. Am J Physiol Heart Circ Physiol. 2005;288:1411–6.

    Article  CAS  Google Scholar 

  68. Gardner AM, Olah ME. Distinct protein kinase C isoforms mediate regulation of vascular endothelial growth factor expression by A2A adenosine receptor activation and phorbol esters in pheochromocytoma PC12 cells. J Biol Chem. 2003;278:15421–8.

    Article  CAS  PubMed  Google Scholar 

  69. Zhou R, Chen F, Li Q, Hu DY, Liu LM. Stimulation of the adenosine A3 receptor reverses vascular hyporesponsiveness after hemorrhagic shock in rats. Acta Pharmacol Sin. 2010;31:413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Abbracchio MP, Camurri A, Ceruti S, Cattabeni F, Falzano L, Giammarioli AM, Jacobson KA, Trincavelli L, Martini C, Malorni W, Fiorentini C. The A3 adenosine receptor induces cytoskeleton rearrangement in human astrocytoma cells via a specific action on Rho proteins. Ann NY Acad Sci. 2001;939:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Annane D, Bellissant E, Sebille V, Lesieur O, Mathieu B, Raphael JC, Gajdos P. Impaired pressor sensitivity to noradrenaline in septic shock patients with and without impaired adrenal function reserve. Br J Clin Pharmacol. 1998;46:589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Buchele GL, Silva E, Tascon GA, Vincent JL, Backer DD. Effects of hydrocortisone on microcirculatory alterations in patients with septic shock. Crit Care Med. 2009;37:1341–7.

    Article  CAS  PubMed  Google Scholar 

  73. Kaufmann I, Briegel J, Schliephake F, Hoelzl A, Chouker A, Hummel T, Schelling G, Thiel M. Stress doses of hydrocortisone in septic shock: beneficial effects on opsonization-dependent neutrophil functions. Intensive Care Med. 2008;34:344–9.

    Article  CAS  PubMed  Google Scholar 

  74. Jones AE, Puskarich MA. The surviving sepsis campaign guidelines 2012: update for emergency physicians. Ann Emerg Med. 2014;63:35–47.

    Article  PubMed  Google Scholar 

  75. Zhao KS, Huang X, Liu J, Huang Q, Jin C, Jiang Y, Jin J, Zhao G. New approach to treatment of shock–restitution of vasoreactivity. Shock. 2002;18:189–92.

    Article  PubMed  Google Scholar 

  76. Zhao KS, Liu J, Yang GY, Jin C, Huang Q, Huang X. Peroxynitrite leads to arteriolar smooth muscle cell membrane hyperpolarization and low vasoreactivity in severe shock. Clin Hemorheol Microcirc. 2000;23:259–67.

    CAS  PubMed  Google Scholar 

  77. Wang X, Song R, Chen Y, Zhao M, Zhao KS. Polydatin—a new mitochondria protector for acute severe hemorrhagic shock treatment. Expert Opin Investig Drugs. 2012:22169–22179.

    Google Scholar 

  78. Lei Y, Peng X, Liu L, Dong Z, Li T. Beneficial effect of cyclosporine A on traumatic hemorrhagic shock. J Surg Res. 2015;195:529–40.

    Article  CAS  PubMed  Google Scholar 

  79. Yang GM, Peng XY, Hu Y, Lan D, Wu Y, Li T, Liu LM. 4-Phenylbutyrate benefits traumatic hemorrhagic shock in rats by attenuating oxidative stress, not by attenuating endoplasmic reticulum stress. Crit Care Med. 2016;XX. doi:10.1097/CCM.0000000000001469.

  80. Ida KK, Otsuki DA, Sasaki AT, Borges ES, Castro LU, Sanches TR, Shimizu MH, Andrade LC, Auler JO Jr, Dyson A, Smith KJ, Rocha Filho JA, Malbouisson LM. Effects of terlipressin as early treatment for protection of brain in a model of haemorrhagic shock. Crit Care. 2015;19:107.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Xiao XD, Zhu Y, Zhen D, Chen XM, Wu Y, Liu LM, Li T. Beneficial and side effects of arginine vasopressin and terlipressin for septic shock. J Surg Res. 2015;195:568–79.

    Article  CAS  PubMed  Google Scholar 

  82. Neto AS, Nassar AP, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Damasceno MC, Russell JA. Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials. Crit Care. 2012;16:R154.

    Article  Google Scholar 

  83. Hu Y, Li T, Tang XF, Chen K, Liu LM. Effects of ischemic preconditioning on vascular reactivity and calcium sensitivity after hemorrhagic shock and their relationship to the RhoA-Rho-kinase pathway in rats. J Cardiovasc Pharmacol. 2011;57:231–9.

    Article  CAS  PubMed  Google Scholar 

  84. Erling N, Nakagawa NK, Cruz JW, Zanoni FL, Silva JC, Sannomiya P, Figueiredo LF. Microcirculatory effects of local and remote ischemic preconditioning in supraceliac aortic clamping. J Vasc Surg. 2010;52:1321–9.

    Article  PubMed  Google Scholar 

  85. Raval AP, Dave KR, DeFazio RA, Pinzon MA. epsilonPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res. 2007;1184:345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rezkalla SH, Kloner RA. Ischemic preconditioning for the clinician. WMJ. 2006;105:22–6.

    PubMed  Google Scholar 

  87. Xu J, Li T, Yang GM, Liu LM. Pinacidil pretreatment improves vascular reactivity after shock through PKCalpha and PKCepsilon in rats. J Cardiovasc Pharmacol. 2012;59:514–22.

    Article  CAS  PubMed  Google Scholar 

  88. Wu W, Huang Q, Miao J, Xiao M, Liu H, Zhao K. Zhao M:MK2 plays an important role for the increased vascular permeability that follows thermal injury. Burns. 2013;39:923–34.

    Article  PubMed  Google Scholar 

  89. Wang S, Huang Q, Guo J, Guo X, Sun Q, Brunk UT, Han D, Zhao K, Zhao M. Local thermal injury induces general endothelial cell contraction through p38 MAP kinase activation. APMIS. 2014;122:832–41.

    Article  CAS  PubMed  Google Scholar 

  90. Wu W, Huang Q, He F, Xiao M, Pang S, GuoX, Brunk UT, Zhao K, Zhao M. Roles of mitogen-activated protein kinases in the modulation of endothelial cell function following thermal injury. Shock. 2011;35:618–625.

    Google Scholar 

  91. Zhao Z, Li Q, Hu J, Li Z, Liu J, Liu A, Deng P, Zhang L, Gong X, Zhao K, Zhang S, Jiang Y. Lactosyl derivatives function in a rat model of severe burn shock by acting as antagonists against CD11b of integrin on leukocytes. Glycoconj J. 2009;26:173–88.

    Article  CAS  PubMed  Google Scholar 

  92. Garcia NM, Horton JW. Burn injury alters coronary endothelial function. J Surg Res. 1996;60:74–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liu, L., Li, T., Yang, G., Duan, C. (2017). Calcium Desensitization Mechanism and Treatment for Vascular Hyporesponsiveness After Shock. In: Fu, X., Liu, L. (eds) Advanced Trauma and Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-2425-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2425-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2424-5

  • Online ISBN: 978-981-10-2425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics