Skip to main content

Advances in Early Treatment of Combat and Traumatic Shock

  • Chapter
  • First Online:
Advanced Trauma and Surgery
  • 1240 Accesses

Abstract

Trauma has become a public hazard in modern society and its mortality has ranked the third place in all diseases. Traumatic-hemorrhagic shock is an important complication of trauma and accounts for nearly 50 % of the early death in trauma. In recent years, many new treatment measures and concepts have been put forward for the early treatment of war wound and trauma, including effective blood control, damage control resuscitation, early application of vasoactives and vascular hypo-reactivity control, etc. In this review, we will elaborate the new treatment concepts and measures to trauma shock and discuss the future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang ZG. Advances in trauma research. J Traumatic Surg. 2007;15(11):727–30.

    CAS  Google Scholar 

  2. Zhou JH, Wang ZG. Research advances in traffic accident injury in China. Chin J Traumatol. 2005;21(1):71–3.

    Google Scholar 

  3. Liu LM. New methods and strategies in fluid resuscitation for traumatic shock at early stage. Chin J Appl Surg. 2006;26:913–5.

    Google Scholar 

  4. Eastridge BJ, Mabry RL, Seguin P, et al. Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl. 5):S431–7.

    Article  PubMed  Google Scholar 

  5. Blackbourne LH, Baer DG, Eastridge BJ, et al. Military medical revolution: prehospital combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl. 5):S372–7.

    Article  PubMed  Google Scholar 

  6. Kragh JF Jr, Walters TJ, Baer DG, et al. Survival with emergency tourniquet use to stop bleeding in major limb trauma. Ann Surg. 2009;249(1):1–7.

    Article  PubMed  Google Scholar 

  7. Glassberg E, Nadler R, Erlich T, Klien Y, Kreiss Y, Kluger Y. A decade of advances in military trauma care. Scand J Surg. 2014;103:126–131.

    Google Scholar 

  8. Beekley AC. Damage control resuscitation: a sensible approach to the exsanguinating surgical patients. Crit Care Med. 2008;36(S):267–74.

    Google Scholar 

  9. Brohi K, Cohen MJ, Ganter MT, et al. Acute coagulopathy oftrauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64(5):1211–7.

    Article  PubMed  Google Scholar 

  10. Hoyt DB, Dutton RP, Hauser CJ, et al. Management of coagulopathyin the patients with multiple injuries: results from an international survey of clinical practice. J Trauma. 2008;65(4):755–64.

    Article  PubMed  Google Scholar 

  11. Perkins JG, Cap AP, Spinella PC, et al. An evaluation of the impact of platelets used in the setting of massively transfused trauma patients. J Trauma. 2009;66(S4):S77–84.

    Article  PubMed  Google Scholar 

  12. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Rossaint R. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li T, Zhu Y, Hu Y, Diao Y, Liao Z, Li P, Liu L. Ideal permissive hypotension to resuscitate uncontrolled hemorrhagic shock and the tolerance time in rats. Anesthesiology. 2011;114(1):111–9.

    Article  PubMed  Google Scholar 

  14. Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, Liscum KR, Wall MJ Jr, Mattox KL. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70:652–63.

    Article  PubMed  Google Scholar 

  15. Zhang Y, Gao B, Wang JJ, Sun XD, Liu XW. Effect of hypotensive resuscitation with a novel combination of fluids in a rabbit model of uncontrolled hemorrhagic shock. PLoS ONE. 2013;8(6):e66916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Granfeldt A, Nielsen TK, Sølling C, Hyldebrandt JA, Frøkiær J, Wogensen L, Dobson GP, Vinten-Johansen J, Tønnesen E. Adenocaine and Mg (2+) reduce fluid requirement to maintain hypotensive resuscitation and improve cardiac and renal function in a porcine model of severe hemorrhagic shock. Crit Care Med. 2012;40(11):3013–25.

    Article  CAS  PubMed  Google Scholar 

  17. Teranishi K, Scultetus A, Haque A, Stern S, Philbin N, Rice J, Johnson T, Auker C, McCarron R, Freilich D, Arnaud F. Traumatic brain injury and severe uncontrolled haemorrhage with short delay pre-hospital resuscitation in a swine model. Injury. 2012;43(5):585–93.

    Article  PubMed  Google Scholar 

  18. Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, Mattox KL. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):1105–9.

    Google Scholar 

  19. Schreiber MA, Meier EN, Tisherman SA, Kerby JD, Newgard CD, Brasel K, Egan D, Witham W, Williams C, Daya M, Beeson J, McCully BH, Wheeler S, Kannas D, May S, McKnight B, Hoyt DB. ROC investigators. A controlled resuscitation strategy is feasible and safe in hypotensive trauma patients: results of a prospective randomized pilot trial. J Trauma Acute Care Surg. 2015;78(4):687–95.

    Google Scholar 

  20. Mohr J, Ruchholtz S, Hildebrand F, Flohé S, Frink M, Witte I, Weuster M, Fröhlich M, van Griensven M, Keibl C, Mommsen P. Induced hypothermia does not impair coagulation system in a swine multiple trauma model. J Trauma Acute Care Surg. 2013;74(4):1014–20.

    Article  CAS  PubMed  Google Scholar 

  21. Takasu A, Stezoski SW, Stezoski J, Safar P, Tisherman SA. Mild or moderate hypothermia, but not increased oxygen breathing, increases long-term survival after uncontrolled hemorrhagic shock in rats. Crit Care Med. 2000;28(7):2465–74.

    Article  CAS  PubMed  Google Scholar 

  22. Li T, Lin X, Zhu Y, Li L, Liu L. Short-term, mild hypothermia can increase the beneficial effect of permissive hypotension on uncontrolled hemorrhagic shock in rats. Anesthesiology. 2012;116(6):1288–98.

    Article  CAS  PubMed  Google Scholar 

  23. Gu X, Wei ZZ, Espinera A, Lee JH, Ji X, Wei L, Dix TA, Yu SP. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats. Exp Neurol. 2015;267:135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gonzalez E, Moore EE, Moore HB, Chapman MP, Silliman CC, Banerjee A. A decade of advances in military trauma care. Scand J Surg. 2014;103:126–31.

    Article  Google Scholar 

  25. Palm K, Apodaca A, Spencer D, Costanzo G, Bailey J, Blackbourne LH, Spott MA, Eastridge BJ. Evaluation of military trauma system practices related to damage-control resuscitation. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S459–64.

    Article  PubMed  Google Scholar 

  26. Gruen RL, Brohi K, Schreiber M, Balogh ZJ, Pitt V, Narayan M, Maier RV. Haemorrhage control in severely injured patients. Lancet. 2012;22:1099–108.

    Google Scholar 

  27. Klages M, Zacharowski K, Weber CF. Coagulation management in trauma-associated coagulopathy: allogenic blood products versus coagulation factor concentrates in trauma care. Curr Opin Anaesthesiol. 2016;[Epub ahead of print], PMID: 26784352.

    Google Scholar 

  28. Murphy CH, Hess JR. Massive transfusion: red blood cell to plasma and platelet unit ratios for resuscitation of massive hemorrhage. Curr Opin Hematol. 2015;22:533–9.

    Google Scholar 

  29. Li T, Zhu Y, Fang Y, Liu L. Determination of the optimal mean arterial pressure for post bleeding resuscitation after hemorrhagic shock in rats. Anesthesiology. 2012;116(2):103–12.

    Article  PubMed  Google Scholar 

  30. Ducrocq N, Kimmoun A, Levy B. Lactate or ScvO2 as an endpoint in resuscitation of shock states? Minerva Anestesiol. 2013;79(9):1049–58.

    CAS  PubMed  Google Scholar 

  31. Connelly CR, Schreiber MA. Endpoints in resuscitation. Curr Opin Crit Care. 2015;21(6):512–9.

    Article  PubMed  Google Scholar 

  32. van Beest P, Wietasch G, Scheeren T, Spronk P, Kuiper M. Clinical review: use of venous oxygen saturations as a goal-a yet unfinished puzzle. Crit Care. 2011;15(5):232–40.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu CY, Chan KC, Cheng YJ, Yeh YC, Chien CT. Effects of different types of fluid resuscitation for hemorrhagic shock on splanchnic organ microcirculation and renal reactive oxygen species formation. Crit Care. 2015;19(1):434.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Han J, Ren HQ, Zhao QB, Wu YL, Qiao ZY. Comparison of 3 % and 7.5 % hypertonic saline in resuscitation after traumatic hypovolemic shock. Shock. 2015;43(3):244–9.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao JX, Wang B, You GX, Wang Y, Chen G, Wang Q, Zhang XG, Zhao L, Zhou H, He YZ. Hypertonic saline dextran ameliorates organ damage in beagle hemorrhagic shock. PLoS ONE. 2015;10(8):e0136012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Corrêa TD, Rocha LL, Pessoa CM, Silva E, de Assuncao MS. Fluid therapy for septic shock resuscitation: which fluid should be used? Einstein (Sao Paulo). 2015;13(3):462–8.

    Article  Google Scholar 

  37. Garnacho-Montero J, Fernández-Mondéjar E, Ferrer-Roca R, Herrera-Gutiérrez ME, Lorente JA, Ruiz-Santana S, Artigas A. Crystalloids and colloids in critical patient resuscitation. Med Intensiva. 2015;39(5):303–15.

    Article  CAS  PubMed  Google Scholar 

  38. Van Hemelrijck J, Levien LJ, Veeckman L, Pitman A, Zafirelis Z, Standl T. A safety and efficacy evaluation of hemoglobin-based oxygen carrier HBOC-201 in a randomized, multicenter red blood cell controlled trial in noncardiac surgery patients. Anesth Analg. 2014;119(4):766–76.

    Google Scholar 

  39. Njoku M, St Peter D, Mackenzie CF. Haemoglobin-based oxygen carriers: indications and future applications. Br J Hosp Med (Lond). 2015;76(2):78–83.

    Google Scholar 

  40. Galvagno SM Jr, Mackenzie CF. New and future resuscitation fluids for trauma patients using hemoglobin and hypertonic saline. Anesthesiol Clin. 2013;31(1):1–19.

    Article  PubMed  Google Scholar 

  41. White NJ, Wang X, Bradbury N, Moon-Massat PF, Freilich D, Auker C, McCarron R, Scultetus A, Stern SA. Fluid resuscitation of uncontrolled hemorrhage using a hemoglobin-based oxygen carrier: effect of traumatic brain injury. Shock. 2013;39(2):210–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yadav VR, Nag O, Awasthi V. Biological evaluation of liposome-encapsulated hemoglobin surface-modified with a novel PEGylated nonphospholipid amphiphile. Artif Organs. 2014;38(8):625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Q, Sun L, Ji S, Zhao D, Liu J, Su Z, Hu T. Reversible protection of Cys-93(β) by PEG alters the structural and functional properties of the PEGylated hemoglobin. Biochim Biophys Acta. 2014;1844(7):1201–7.

    Article  CAS  PubMed  Google Scholar 

  44. Belcher JD, Young M, Chen C, Nguyen J, Burhop K, Tran P, Vercellotti GM. MP4CO induces cytoprotective Nrf2 and HO-1 and decreases NF-ĸB activation, microvascular stasis, and mortality in transgenic sickle mouse models. Blood. 2013;122(15):2757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng XF, Sun XJ, Xia ZF. Hydrogen resuscitation, a new cytoprotective approach. Clin Exp Pharmacol Physiol. 2011;38(3):155–63.

    Article  CAS  PubMed  Google Scholar 

  46. Lee CC, Chang IJ, Yen ZS, Hsu CY, Chen SY, Su CP, Chiang WC, Chen SC, Chen WJ. Effect of different resuscitation fluids on cytokine response in a rat model of hemorrhagic shock. Shock. 2005;24(2):177–81.

    Article  CAS  PubMed  Google Scholar 

  47. Fink MP. Ringer’s ethyl pyruvate solution: a novel resuscitation fluid. Minerva Anestesiol. 2001;67(4):190–2.

    Google Scholar 

  48. Stadlbauer KH, Wagner-Berger HG, Krismer AC, Voelckel WG, Konigsrainer A, Lindner KH, Wenzel V. Vasopressin improves survival in a porcine model of abdominal vascular injury. Crit Care. 2007;11(4):R81.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stadlbauer KH, Wenzel V, Wagner-Berger HG, Krismer AC, Königsrainer A, Voelckel WG, Raedler C, Schmittinger CA, Lindner KH, Klima G. An observational study of vasopressin infusion during uncontrolled haemorrhagic shock in a porcine trauma model: effects on bowel function. Resuscitation. 2007;72(1):145–8.

    Article  CAS  PubMed  Google Scholar 

  50. Li T, Fang Y, Zhu Y, Fang X, Liao Z, Chen F, Liu L. A small dose of arginine vasopressin in combination with norepinephrine is a good early treatment for uncontrolled hemorrhagic shock after hemostasis. J Surg Res. 2011;169(1):76–84.

    Article  CAS  PubMed  Google Scholar 

  51. Yang G, Hu Y, Peng X, Zhu Y, Zang J, Li T, Liu L. Hypotensive resuscitation in combination with arginine vasopressin may prolong the hypotensive resuscitation time in uncontrolled hemorrhagic shock rats. J Surg Res. 2015;78(4):760–6.

    CAS  Google Scholar 

  52. Zangrillo A, Putzu A, Monaco F, Oriani A, Frau G, De Luca M, Di Tomasso N, Bignami E, Lomivorotov V, Likhvantsev V, Landoni G. Levosimendan reduces mortality in patients with severe sepsis and septic shock: a meta-analysis of randomized trials. J Crit Care. 2015. pii:S0883–9441.

    Google Scholar 

  53. Hernandez G, Bruhn A, Luengo C, Regueira T, Kattan E, Fuentealba A, Florez J, Castro R, Aquevedo A, Pairumani R, McNab P, Ince C. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013;39(8):1435–43.

    Article  CAS  PubMed  Google Scholar 

  54. Singleton PA, Moreno-Vinasco L, Sammani S, Wanderling SL, Moss J, Garcia JG. Attenuation of vascular permeability by methylnaltrexone: role of mOP-R and S1P3 transactivation. Am J Respir Cell Mol Biol. 2007;37(2):222–31.

    Article  CAS  PubMed  Google Scholar 

  55. Kaptanoglu L, Kapan M, Kapan S, Goksoy E, Oktar H. Effects of nimodipine and pentoxyfylline in prevention of hepatic ischemic damage in rats at normal and hypothermic conditions. Eur J Pharmacol. 2008;587(1–3):253–6.

    Article  CAS  PubMed  Google Scholar 

  56. Nakagawa NK, Cruz RJ Jr, Aikawa P, Correia CJ, Cruz JW, Mauad T, Zhang H, Rocha-e-Silva M, Sannomiya P. Pentoxifylline attenuates leukocyte-endothelial interactions in a two-hit model of shock and sepsis. J Surg Res. 2015;193(1):421–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kim HJ, Lee KH. The effectiveness of hypertonic saline and pentoxifylline (HTS-PTX) resuscitation in haemorrhagic shock and sepsis tissue injury: comparison with LR, HES, and LR-PTX treatments. Injury. 2012;43(8):1271–6.

    Article  PubMed  Google Scholar 

  58. Liu L, Song Y, Zhao M, Yi Z, Zeng Q. Protective effects of edaravone, a free radical scavenger, on lipopolysaccharide-induced acute kidney injury in a rat model of sepsis. Int Urol Nephrol. 2015;47(10):1745–52.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao L, An R, Yang Y, Yang X, Liu H, Yue L, Li X, Lin Y, Reiter RJ, Qu Y. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling. J Pineal Res. 2015;59(2):230–9.

    Article  CAS  PubMed  Google Scholar 

  60. Anand T, Skinner R. Arginine vasopressin: the future of pressure-support resuscitation in hemorrhagic shock. J Surg Res. 2012;178(1):321–9.

    Article  CAS  PubMed  Google Scholar 

  61. Voelckel WG, Convertino VA, Lurie KG, et al. Vasopressin for hemorrhagic shock management: revisiting the potential value in civilian and combat casualty care. J Trauma. 2010;69(S): S69–S74.

    Google Scholar 

  62. Liu L, Tian K, Zhu Y, Ding X, Li T. δ opioid receptor antagonist, ICI 174,864, is suitable for the early treatment of uncontrolled hemorrhagic shock in rats. Anesthesiology. 2013;119(2):379–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Li, T., Liu, L. (2017). Advances in Early Treatment of Combat and Traumatic Shock. In: Fu, X., Liu, L. (eds) Advanced Trauma and Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-2425-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2425-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2424-5

  • Online ISBN: 978-981-10-2425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics