Skip to main content

Sweat Gland Regeneration: Basic Scientific Problems and Possible Technical Approaches

  • Chapter
  • First Online:
Advanced Trauma and Surgery

Abstract

The term ‘sweat gland regeneration’ refers to a new and expanding field in regenerative medicine research that focuses on the development of innovative therapies allowing the body to replace, restore and regenerate damaged or diseased sweat gland cells and tissues. It combines basic scientific theory and technological approaches including dedifferentiation, biomaterials, tissue engineering, stem cell transplantation and the reprogramming of cell and tissue types. Because of its importance for skin reconstitution in patients suffering from chronic wounds and extensive burns, sweat gland regeneration is becoming an rapidly developing field in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai S, Fu XB, Sheng ZY. Dedifferentiation: a new approach in stem cell research. Bioscience. 2007;57:8.

    Article  Google Scholar 

  2. Fu XB, Li JF, Sun XQ, Sun TZ, Sheng ZY. Epidermal stem cells are the source of sweat glands in human fetal skin: evidence of synergetic development of stem cells, sweat glands, growth factors, and matrix metalloproteinases. Wound Repair Regen. 2005;13:102.

    Article  PubMed  Google Scholar 

  3. Fu XB, Sun XQ, Li XK, Sheng ZY. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet. 2001;358:1067.

    Article  CAS  PubMed  Google Scholar 

  4. Li HH, Fu XB, Lei Z, Sun TZ, Wang J. In vivo dedifferentiation of human epidermal cells. Cell Biol Int. 2007;31:1436.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang CP, Fu XB, Chen P, Bao XD, Li F, Sun XY, Lei YH, Cai S, Sun TZ, Sheng ZY. Dedifferentiation-derived cells exhibit phenotypic and functional characteristics of epidermal stem cells. J Cell Mol Med. 2009;14:1135.

    PubMed Central  Google Scholar 

  6. Fu XB, Shen ZY, Chen YL, Xie JH, Guo ZR, Zhang ML, Sheng ZY. Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns. Lancet. 1998;352:1661.

    Article  CAS  PubMed  Google Scholar 

  7. Sun XY, Fu XB, Han WD, Zhao YL, Liu HL, Sheng ZY. Dedifferentiation of human terminally differentiating keratinocytes into their precursor cells induced by basic fibroblast growth factor. Biol Pharm Bull. 2011;34:1037.

    Article  CAS  PubMed  Google Scholar 

  8. Cai S, Pan Y, Fu XB, Lei YH, Sun TZ, Wang J, Sheng ZY. Dedifferentiation of human epidermal keratinocytes induced by UV in vitro. J Health Sci. 2009;55:11.

    Article  Google Scholar 

  9. Zhang CP, Chen P, Lei YH, Liu B, Ma K, Fu XB, Zhao Z, Sun TZ, Sheng ZY. Wnt/β-catenin signaling is critical for dedifferentiation of aged epidermal cells in vivo and in vitro. Aging Cell. 2011;11:14–23.

    Article  CAS  PubMed  Google Scholar 

  10. Sun XY, Fu XB, Han WD, Zhao YL, Liu HL. Can controlled cellular reprogramming be achieved using microRNAs? Ageing Res Rev. 2010;9:475.

    Article  CAS  PubMed  Google Scholar 

  11. Li JF, Fu XB, Sheng ZY. The interaction between epidermal growth factor and matrix metalloproteinases induces the development of sweat glands in human fetal skin. J Surg Res. 2002;106:258–63.

    Article  CAS  PubMed  Google Scholar 

  12. Fu XB, Qu ZL, Sheng ZY. Potentiality of mesenchymal stem cells in regeneration of sweat glands. J Surg Res. 2006;136:204–8.

    Article  PubMed  Google Scholar 

  13. Li HH, Fu XB, Zhang L, Zhou G. Comparison of proliferating cells between human adult and fetal eccrine sweat glands. Arch Dermatol Res. 2008;300:173–6.

    Article  PubMed  Google Scholar 

  14. Li HH, Zhou G, Fu XB, Zhang L, Sun TZ. Antigen expression of human eccrine sweat glands. J Cutane Pathol. 2009;36:318–24.

    Article  Google Scholar 

  15. Li HH, Fu XB, Ouyang YS, Cai CL, Wang J, Sun TZ. Adult bone marrow derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell Tissue Res. 2006;326:725–36.

    Article  CAS  PubMed  Google Scholar 

  16. Sheng ZY, Fu XB, Cai S, Lei YH, Sun TZ, Bai XD, Chen ML. Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Rep Reg. 2009;17:427–35.

    Article  Google Scholar 

  17. Huang S, Xu Y, Wu C, Sha D, Fu XB. In vitro constitution and in vivo implantation of engineered skin constructs with sweat glands. Biomaterials. 2010;31:5520–5.

    Article  CAS  PubMed  Google Scholar 

  18. Karbanová J, Missol-Kolka E, Fonseca AV, Lorra C, Janich P, et al. The stem cell marker CD133 (prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem. 2008;56:977–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakamura M, Tokura Y. The localization of label-retaining cells in eccrine glands. J Invest Dermatol. 2009;129:2077–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ohyama M. Hair follicle bulge: a fascinating reservoir of epithelial stem cells. J Dermatol Sci. 2007;46:81–9.

    Article  CAS  PubMed  Google Scholar 

  21. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but the epidermis. Cell. 2000;102:451–61.

    Article  CAS  PubMed  Google Scholar 

  22. Biedermann T, Pontiggia L, Böttcher-Haberzeth S, Tharakan S, Braziulis E, et al. Human eccrine sweat gland cells can reconstitute a stratified epidermis. J Invest Dermatol. 2010;130:1996–2009.

    Article  CAS  PubMed  Google Scholar 

  23. Fusenig NE. Epithelial–mesenchymal interactions regulate keratinocyte growth and differentiation in vitro. In: Leigh I, Lane B, Watt F, editors. The keratinocyte handbook. Cambridge: Cambridge University Press; 1994. p. 71–97.

    Google Scholar 

  24. Andriani F, Margulis A, Lin N, Griffey S, Garlick JA. Analysis of microenvironmental factors contributing to basement membrane assembly and normalized epidermal phenotype. J Invest Dermatol. 2003;120:923–31.

    Article  CAS  PubMed  Google Scholar 

  25. Berking C, Herlyn M. Human skin reconstruct models: a new application for studies of melanocyte and melanoma biology. Histol Histopathol. 2001;16:669–74.

    CAS  PubMed  Google Scholar 

  26. Blecher SR, Kapalanga J, Lalonde D. Induction of sweat glands by epidermal growth factor in murine X-linked anhidrotic ectodermal dysplasia. Nature. 1990;345:542–4.

    Article  CAS  PubMed  Google Scholar 

  27. Fu X. Regenerative medicine research in China: demands and practice. Regenerative medicine in China. Science. 2012;336(6080):3.

    Google Scholar 

  28. Huang S, Tang L, Fu X. Artificial skin as a sweat gland regeneration matrix. Regenerative medicine in China. Science. 2012;336(6080):42.

    Google Scholar 

  29. Fu X, Sheng Z. Functional sweat gland regeneration: preliminary success but still a long way to go. Regenerative medicine in China. Science. 2012;336(6080):46.

    Google Scholar 

  30. Huang S, Yao B, Xie J, et al. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomater. 2016;32:170–7.

    Article  CAS  PubMed  Google Scholar 

  31. Huang S, Fu XB. Stem cell therapies and regenerative medicine in China. Sci China Life Sci. 2014;57(2):157–61.

    Article  CAS  PubMed  Google Scholar 

  32. Sa Cai, Pan Yu, Xiaoyan Sun, et al. Dedifferentiation: a new approach skin regeneration. Science. 2012;336(6080):58.

    Google Scholar 

Download references

Acknowledgments

These works were supported in part by the National Basic Science and Development Programme (973 Programme, 2005CB522603, 2012CB518105) and the National Natural Science Foundation of China (30730090 and 81121004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Huang, S., Cai, S., Sun, X., Zhang, C., Sheng, Z., Fu, X. (2017). Sweat Gland Regeneration: Basic Scientific Problems and Possible Technical Approaches. In: Fu, X., Liu, L. (eds) Advanced Trauma and Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-2425-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2425-2_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2424-5

  • Online ISBN: 978-981-10-2425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics