Skip to main content

Inference of Sound Attenuation in Marine Sediments from Modal Dispersion in Shallow Water

  • Conference paper
  • First Online:
  • 743 Accesses

Abstract

Attenuation of sound in the seabed plays an important role in predicting transmission loss in shallow water waveguides. Methods to invert the attenuation from low-frequency acoustic field data include time-frequency techniques that make use of modal dispersion. Since modal separation improves as a sound signal that propagates to longer ranges, most of the inversion methods based on modal dispersion were carried out with long range data. Recently a time-warping signal processing technique was introduced that enables high resolution of modes at relatively short ranges. Time-warping involves an axis transformation that transforms the original time-frequency relationship of the modes to a new domain in which the modes are approximately tonal and are well resolved. This paper shows that the inversion can be carried out directly in the time-warped domain, and extends the work to estimate low-frequency seabed attenuation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chapman, N.R., Chin-Bing, S.A., King, D., Evans, R.: Benchmarking geoacoustic inversion methods for range dependent waveguides. IEEE J. Oceanic Eng. 28(3), 320–330 (2003)

    Article  Google Scholar 

  2. Holmes, J.D., Carey, W.M.: Nonlinear frequency-dependent attenuation in sandy sediments. J. Acoust. Soc. Am. 121(5), EL218–EL222 (2007)

    Article  ADS  Google Scholar 

  3. Zhou, J.X., Zhang, X.Z., Knobles, D.P.: Low-frequency geoacoustic model for the effective properties of sandy sea bottoms. J. Acoust. Soc. Am. 125(5), 2847–2866 (2009)

    Article  ADS  Google Scholar 

  4. Tindle, C.T.: Attenuation parameters from normal mode measurements. J. Acoust. Soc. Am. 71(5), 1145–1148 (1982)

    Article  ADS  Google Scholar 

  5. Rogers, P.H., Zhou, J.X., Zhang, X.Z., Li, F.: Seabottom acoustic parameters from inversion of Yellow Sea experimental data. In: Caiti, A., Hermand, J.P., Jesus, S.M., Porter, M.B. (eds.) Experimental Acoustic Inversion Methods for Exploration of the Shallow Water Environment, pp. 219–234. Kluwer (2000)

    Google Scholar 

  6. Zhou, X., Zhang, X.Z., Rogers, P.H., Jarzynski, J.: Geoacoustic parameters in a stratified sea bottom from shallow-water acoustic propagation. J. Acoust. Soc. Am. 82(6), 2068–2074 (1987)

    Article  ADS  Google Scholar 

  7. Wan, L., Zhou, J.X., Rogers, P.H.: Low-frequency sound speed and attenuation in sandy sea bottom from long-range broad-band acoustic measurements. J. Acoust. Soc. Am. 128(2), 578–589 (2010)

    Article  ADS  Google Scholar 

  8. Carey, W.M., Evans, R.E.: Frequency dependence of sediment attenuation in two low-frequency shallow-wateracoustic experimental data sets. IEEE J. Oceanic Eng. 23(4), 439–447 (1998)

    Article  Google Scholar 

  9. Cole, B.: Marine sediment attenuation and ocean-bottom-reflected sound. J. Acoust. Soc. Am. 38(2), 291–297 (1965)

    Article  ADS  Google Scholar 

  10. Ioana, C., Quinquis, A., Stephan, Y.: Feature extraction from underwater signal using time-frequency warping operators. IEEE J. Oceanic Eng. 31(3), 628–645 (2006)

    Article  Google Scholar 

  11. Bonnel, J., Gervaise, C.: Modal depth function estimation using time-frequency analysis. J. Acoust. Soc. Am. 130(1), 61–71 (2011)

    Article  ADS  Google Scholar 

  12. Gao, D.Z., Wang, N., Wang, H.Z.: A dedispersion transform for sound propagation on shallow water waveguide. J. Comp. Acoustics 18(3), 245–258 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bonnel, J., Chapman, N.R.: Geoacoustic inversion in a dispersive waveguide using warping operators. J. Acoust. Soc. Am. 130(2), EL101–EL107 (2011)

    Article  ADS  Google Scholar 

  14. Zeng, J., Chapman, N.R., Bonnel, J.: Inversion of seabed attenuation using time-warping of close range data. J. Acoust. Soc. Am. 134(5), EL394–EL399 (2013)

    Article  ADS  Google Scholar 

  15. Koch, R.A., Penland, C., Vidmar, P.J., Hawker, K.E.: On the calculation of normal mode group velocity and attenuation. J. Acoust. Soc. Am. 73(3), 820–825 (1983)

    Article  ADS  MATH  Google Scholar 

  16. Porter, M.B. The KRAKEN Normal Mode Program. Report No. NRL/MR/5120-92-6920. Naval Research Laboratory, Washington, DC (1992)

    Google Scholar 

  17. Li, Z.L., Zhang, R.H.: A broadband geoacoustic inversion scheme. Chin. Phys. Lett. 24, 1100–1103 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ross Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Zhejiang University Press and Springer Science+Business Media Singapore

About this paper

Cite this paper

Chapman, N.R., Zeng, J. (2016). Inference of Sound Attenuation in Marine Sediments from Modal Dispersion in Shallow Water. In: Zhou, L., Xu, W., Cheng, Q., Zhao, H. (eds) Underwater Acoustics and Ocean Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2422-1_1

Download citation

Publish with us

Policies and ethics