Skip to main content

The Optimization Design and Manufacture of Hot Stamping Mold

  • Chapter
  • First Online:
Hot Stamping Advanced Manufacturing Technology of Lightweight Car Body
  • 1718 Accesses

Abstract

In general, the structure of cold stamping die mainly includes the following several parts: upper die, lower die, blank holder ring, punch parts, die parts, all kinds of panel boards, all kinds of lifting lugs, directional plate, guide pins, guide column sets, limit device, safety device, baffle plate, waste tank, variety of standard parts, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn D-G, Kim H-W, Park S-H et al (2010) Manufacture of mould with a high energy efficiency using rapid manufacturing process. In: NUMIFORM 2010, proceedings of the 10th international conference, Korea

    Google Scholar 

  2. Al-Bukhaiti MA, Al-Hatab KA, Tillmann W et al (2014) Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel. Appl Surf Sci 318:180–190

    Article  Google Scholar 

  3. Benri W, Shen J (2013) The die face engineering for the stamping die of auto cover. J Shanghai Electr Technol 1:22–26+30 (in Chinese)

    Google Scholar 

  4. Bin H, Li X, Hu P et al (2015) Investigation of design and manufacture in hot stamping tools with conformal cooling channels based on simulation and 3D-printing technology. Chin J Mech Eng 1–9 (in Chinese)

    Google Scholar 

  5. Bin H, Li X, Ying L et al (2015) Optimal design of hot stamping tools with conformal cooling channels. J Jilin Univ (Eng Technol Ed) 1–7 (in Chinese)

    Google Scholar 

  6. Chao Z (2010) Designing and optimizing of hot stamping tools of ultra high strength steels. Jilin University, p 90 (in Chinese)

    Google Scholar 

  7. Chi D (2009) Several key techniques for CAE-based die-face design system. Jilin University, p 140 (in Chinese)

    Google Scholar 

  8. Gali OA, Shafiei M, Hunter JA et al (2014) The tribological behavior of PVD coated work roll surfaces during rolling of aluminum. Surf Coat Technol 260:230–238

    Article  Google Scholar 

  9. Ghiotti A, Sgarabotto F, Bruschi S (2013) A novel approach to wear testing in hot stamping of high strength boron steel sheets. Wear 302:1319–1326

    Article  Google Scholar 

  10. He B, Ying L, Hu P et al (2012) Design of water cooling tool for hot stamping process of high strength steel. China Metal Forming Equip Manuf Technol 6:62–65 (in Chinese)

    Google Scholar 

  11. He B, Ying L, Hu P et al (2014) Investigation of mechanical property and spring back behavior with hot stamping RCP process. Adv Mater Res 1063:186–189

    Article  Google Scholar 

  12. Hoffmann H, So H, Steinbeiss H (2007) Design of hot stamping tools with cooling system. CIRP Ann-Manuf Technol 56:269–272

    Article  Google Scholar 

  13. Hu P, He B, Ying L (2016) Numerical investigation on cooling performance of hot stamping tool with various channel designs. Appl Therm Eng 96:338–351

    Article  Google Scholar 

  14. Hu P, Ying L, He B et al (2015) A kind of hot-work die material heat engine fatigue test device, p 12 (in Chinese)

    Google Scholar 

  15. Jianru F, Jiang Q, Han Z et al (2002) Life prediction of hot work die steel under thermomechanical fatigue. J Mech Strength 4:571–574 (in Chinese)

    Google Scholar 

  16. Klobčar D, Tušek J, Taljat B (2008) Thermal fatigue of materials for die-casting tooling. Mater Sci Eng A 472:198–207

    Article  Google Scholar 

  17. Li Y (2013) The optimization design of cooling system in hot stamping dies. In: Automobile engineering. Dalian University of Technology, Dalian, p 76 (in Chinese)

    Google Scholar 

  18. Lingping Y, Dong M, Yang Y (2002) Die surface strengthening technology and its application. Die Mould Manuf 2:50–55 (in Chinese)

    Google Scholar 

  19. Nannan S, Wu X, Zhou Q (2011) Effect of surface decarburization layer on thermal fatigue behavior of steel H13. Shanghai Metals 26–29 (in Chinese)

    Google Scholar 

  20. Pengcheng X, Chen Y, Ge X et al (2008) Research status and development trends of thermal fatigue property of hot die steels. Heat Treat Met 12:1–6 (in Chinese)

    Google Scholar 

  21. Persson A (2004) Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int J Fatigue 26:1095–1107

    Article  Google Scholar 

  22. Persson A, Hogmark S, Bergström J (2005) Thermal fatigue cracking of surface engineered hot work tool steels. Surf Coat Technol 191:216–227

    Article  Google Scholar 

  23. Pujante J, Vilaseca M, Casellas D et al (2014) High temperature scratch testing of hard PVD coatings deposited on surface treated tool steel. Surf Coat Technol 254:352–357

    Article  Google Scholar 

  24. Schieck F, Hochmuth C, Polster S et al (2011) Modern tool design for component grading incorporating simulation models, efficient tool cooling concepts and tool coating systems. CIRP J Manufact Sci Technol 4:189–199

    Article  Google Scholar 

  25. Shizhe S, Yin L, Wu J et al (2005) Corrosion electrochemistry of brass tube in simulated circulating cooling system. J Chem Ind Eng 1:121–125 (in Chinese)

    Google Scholar 

  26. Sjöström J, Bergström J (2004) Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments. J Mater Process Technol 153–154:1089–1096

    Article  Google Scholar 

  27. Srivastava A, Joshi V, Shivpuri R (2004) Computer modeling and prediction of thermal fatigue cracking in die-casting tooling. Wear 256:38–43

    Article  Google Scholar 

  28. Vilaseca M, Pujante J, Ramírez G et al (2013) Investigation into adhesive wear of PVD coated and uncoated hot stamping production tools. Wear 308:148–154

    Article  Google Scholar 

  29. Wang L, Su JF, Nie X (2010) Corrosion and tribological properties and impact fatigue behaviors of TiN- and DLC-coated stainless steels in a simulated body fluid environment. Surf Coat Technol 205:1599–1605

    Article  Google Scholar 

  30. Wang Y (1997) A study of PVD coatings and die materials for extended die-casting die life. Surf Coat Technol 94–95:60–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Science Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Hu, P., Ying, L., He, B. (2017). The Optimization Design and Manufacture of Hot Stamping Mold. In: Hot Stamping Advanced Manufacturing Technology of Lightweight Car Body. Springer, Singapore. https://doi.org/10.1007/978-981-10-2401-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2401-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2400-9

  • Online ISBN: 978-981-10-2401-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics