Skip to main content

Dynamic Models of Satellite Relative Motion Around an Oblate Earth

  • Chapter
  • First Online:
Satellite Formation Flying

Abstract

Accurate dynamic model of relative motion is basic and critical to the study of satellite formation flying. So accurate nonlinear and linear dynamic models of satellite relative motion considering J 2 perturbation are derived in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfriend KT, Yan H (2005) Evaluation and comparison of relative motion theories. J Guid Control Dyn 28(2):254–261. doi:10.2514/1.6691

    Article  Google Scholar 

  • Battin RH (1999) Introduction to the mathematics and methods of astrodynamics. AIAA education series, vol Book, Whole. American Institute of Aeronautics and Astronautics

    Google Scholar 

  • Breakwell JV (1974) Lecture notes—space mechanics. Department of Aeronautics and Astronautics, Stanford University, Palo Alto, CA

    Google Scholar 

  • Clohessy WH, Wiltshire R (1960) Terminal guidance system for satellite rendezvous. J Aerospace Sci 27(9):653–658. doi:10.2514/8.8704

    Article  MATH  Google Scholar 

  • Gim DW, Alfriend KT (2005) Satellite relative motion using differential equinoctial elements. Celest Mech Dyn Astron 92(4):295–336. doi:10.1007/s10569-004-1799-0

    Article  MathSciNet  MATH  Google Scholar 

  • Gurfil P (2005) Relative motion between elliptic orbits: generalized boundedness conditions and optimal formation keeping. J Guid Control Dyn 28(4):761–767. doi:10.2514/1.9439

    Article  MathSciNet  Google Scholar 

  • Hang Y, Xu G, Wang D, Poh EK (2008) Comparison study of relative dynamic models for satellite formation flying. In: 2nd international symposium on systems and control in aerospace and astronautics, Shenzhen, China, 10–12 Dec 2008. IEEE, pp 1–6. doi:10.1109/ISSCAA.2008.4776195

  • Hill GW (1878) Researches in the lunar theory. Am J Math 1(1):5–26

    Article  MathSciNet  MATH  Google Scholar 

  • Inalhan G, Tillerson M, How JP (2002) Relative dynamics and control of spacecraft formations in eccentric orbits. J Guid Control Dyn 25(1):48–59. doi:10.2514/2.4874

    Article  MATH  Google Scholar 

  • Junkins JL, Akella MR, Alfriend KT (1996) Non-Gaussian error propagation in orbital mechanics. J Astronaut Sci 44(4):541–563

    Google Scholar 

  • Kechichian JA (1998) Motion in general elliptic orbit with respect to a dragging and precessing coordinate frame. J Astronaut Sci 46(1):25–45

    MathSciNet  Google Scholar 

  • Lee D, Cochran JE, Jo JH (2007) Solutions to the variational equations for relative motion of satellites. J Guid Control Dyn 30(3):669–678. doi:10.2514/1.24373

    Article  Google Scholar 

  • Morgan D, Chung SJ, Blackmore L, Acikmese B, Bayard D, Hadaegh FY (2012) Swarm-keeping strategies for spacecraft under J 2 and atmospheric drag perturbations. J Guid Control Dyn 35(5):1492–1506. doi:10.2514/1.55705

    Article  Google Scholar 

  • Palmer PL, Imre E (2007) Relative motion between satellites on neighbouring Keplerian orbits. J Guid Control Dyn 30(2):521–528. doi:10.2514/1.24804

    Article  Google Scholar 

  • Pluym JP, Damaren CJ (2006) Second order relative motion model for spacecraft under J 2 perturbations. In: AIAA/AAS astrodynamics specialist conference and exhibit, Keystone, Colorado, Aug. 21–24 2006. pp 2092–2098

    Google Scholar 

  • Roberts JA, Roberts PCE (2004) The development of high fidelity linearized J 2 models for satellite formation flying control. In: AAS/AIAA the 14th space flight mechanics meeting, Maui, Hawaii, 8–12 Feb 2004

    Google Scholar 

  • Ross IM (2003) Linearized dynamic equations for spacecraft subject to J 2 perturbations. J Guid Control Dyn 26(4):657–659

    Article  Google Scholar 

  • Schaub H (2002) Spacecraft relative orbit geometry description through orbit element differences. In: 14th US national congress of theoretical and applied mechanics blacksburg, VA, Blacksburg, Virginia, 23–28 June 2002

    Google Scholar 

  • Schaub H (2004) Relative orbit geometry through classical orbit element differences. J Guid Control Dyn 27(5):839–848. doi:10.2514/1.12595

    Article  Google Scholar 

  • Schaub H, Alfriend KT (2001) J 2 invariant relative orbits for spacecraft formations. Celest Mech Dyn Astron 79(2):77–95. doi:10.1023/A:1011161811472

    Article  MATH  Google Scholar 

  • Schweighart SA, Sedwick RJ (2002) High-fidelity linearized J 2 model for satellite formation flight. J Guid Control Dyn 25(6):1073–1080

    Article  Google Scholar 

  • Schweighart SA, Sedwick RJ (2005) Cross-track motion of satellite formations in the presence of J 2 disturbances. J Guid Control Dyn 28(4):824–826. doi:10.2514/1.12387

    Article  Google Scholar 

  • Sengupta P, Vadali SR, Alfriend KT (2007) Second-order state transition for relative motion near perturbed, elliptic orbits. Celest Mech Dyn Astron 97(2):101–129. doi:10.1007/s10569-006-9054-5

    Article  MathSciNet  MATH  Google Scholar 

  • Tillerson M, How JP (2002) Advanced guidance algorithms for spacecraft formation-keeping. In: Proceedings of American control conference, 2002. IEEE, pp 2830–2835. doi:10.1109/ACC.2002.1025218

  • Tschauner J, Hempel P (1965) Rendezvous zu einem in elliptischer Bahn umlaufenden Ziel. Astronautica Acta 11(2):104–109

    MATH  Google Scholar 

  • Vadali SR, Vaddi SS, Naik K, Alfriend KT (2001) Control of satellite formations. In: AIAA, guidance, navigation, and control conference and exhibit, Montreal, Canada, 6–9 August 2001

    Google Scholar 

  • Xu G, Wang D (2008a) Nonlinear dynamic equations of satellite relative motion around an oblate earth. J Guid Control Dyn 31(5):1521–1524. doi:10.2514/1.33616

  • Xu GG, Wang DW (2008b) Dynamic models of satellite relative motion around an oblate earth. In: AAS/AIAA space flight mechanics meeting, AAS-08-208, Galveston, Texas, 27–31 Jan 2008b. pp 1633–1648

    Google Scholar 

  • Xu G, Poh EK, Wang D, Wu B (2009) Periodic and quasi-periodic satellite relative orbits at critical inclination. In: IEEE Aerospace conference, Big Sky, MT, USA, 7–14 Mar 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danwei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wang, D., Wu, B., Poh, E.K. (2017). Dynamic Models of Satellite Relative Motion Around an Oblate Earth. In: Satellite Formation Flying. Intelligent Systems, Control and Automation: Science and Engineering, vol 87. Springer, Singapore. https://doi.org/10.1007/978-981-10-2383-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2383-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2382-8

  • Online ISBN: 978-981-10-2383-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics