Skip to main content

Conditions of Disturbances Rejection for Discrete First, Second Order and Repetitive Sliding Mode Controllers

  • Chapter
  • First Online:
Book cover Applications of Sliding Mode Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 79))

Abstract

Harmonic disturbance rejection is an important field of control theory and applications. In this paper a discrete first and second order sliding mode control for multivariable systems are investigated. The necessary conditions of harmonic disturbances rejection using first and second order sliding mode control laws are elaborated. In order to improve the performances of sliding mode control in periodic disturbances rejection, a discrete repetitive sliding mode control is presented. A necessary condition for the choice of the discontinuous terms in discrete repetitive sliding mode control is then developed. The different proposed control strategies have been tested on numerical simulation example. The obtained results are very satisfactory in terms of compensation of periodic disturbances using discrete repetitive sliding mode control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arimoto, S., Kawamura, S., & Miyazaki, F. (1984). Bettering operation of dynamic systems by learning: a new control theory for servomechanism or mechatronics systems. Proceedings of the 23rd Conference on Decision and Control, pp. 1064–1069.

    Google Scholar 

  • Bandyopadhyay, B., & Fulwani, D. (2009). High-performance tracking controller for discrete plant using nonlinear sliding surface. IEEE Transactions on Indusrial Electronics, 56(9), 3628–3637.

    Article  Google Scholar 

  • Bartoszewicz, A. (1998). Discrete-time quasi-sliding-mode control strategies. IEEE Transactions on Industrial Electronics, 45(4), 633–637.

    Article  Google Scholar 

  • Bartoszewicz, A., & Lesniewski, P. (2014). Reaching law approach to the sliding mode control of periodic review inventory systems. IEEE Transactions on Automation Science and Engineering, 11(3), 810–817.

    Article  Google Scholar 

  • Castillo-Toledoa, B., Gennaro, S. D., Loukianov, A. G., & Rivera, J. (2008). Discrete time sliding mode control with application to induction motors. Automatica, 44, 3036–3045.

    Article  MathSciNet  MATH  Google Scholar 

  • Cavallo, A., & Natale, C. (2004). High-order sliding control of mechanical systems: theory and experiments. Automatica, 12, 1139–1149.

    Google Scholar 

  • Chan, C. Y. (1997). Discrete-time adaptive sliding mode control of a linear system in statespace form. International Journal of Control, 67(6), 859–868.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, J. L. (2002). Discrete sliding-mode control of mimo linear systems. Asian Journal of Control, 4(2), 217–222.

    Google Scholar 

  • Chang, J. L., & Chen, Y. P. (2000). Sliding vector design based on the pole assignment method. Asian Journal of Control, 2, 10–15.

    Article  Google Scholar 

  • Chang, K., Shim, I., & Park, G. (2006). Adaptive repetitive control for an eccentricity compensation of optical disk drivers. IEEE Transactions on Consumer Electronics, 52(2), 445–450.

    Google Scholar 

  • Dehri, K., Ltaief, M., & Nouri, A.S. (2011). New discrete multivariable sliding mode control for multi-periodic disturbances rejection. Proceedings of the International Multi-Conference on Systems, Signals and Devices, Tunisia.

    Google Scholar 

  • Dehri, K., Ltaief, M., Nouri, A. S. (2012a). Repetitive sliding mode control for nondecouplable systems: periodic disturbances rejection. Proceedings of the 20th Mediterranean Conference on Control and Automation, MED’12, July 3–6, Barcelona, Spain.

    Google Scholar 

  • Dehri, K., Ltaief, M., & Nouri, A. S. (2012b). New discrete sliding mode control for nonlinear multivariable systems: multi-periodic disturbances rejection and stability analysis. International Journal of Control Science and Engineering, 2(2), 7–15.

    Google Scholar 

  • Doh, T.Y., & Ryoo, J.R. (2006). Robust stability condition of repetitive control systems and analysis on steady-state tracking errors. Proceedings of the International Joint Conference on SICE-ICASE, pp. 5169–5174.

    Google Scholar 

  • Fateha, M. M., Tehranib, H. A., & Karbassic, S. M. (2013). Repetitive control of electrically driven robot manipulators. International Journal of Systems Science, 44(4), 775–785.

    Article  MathSciNet  Google Scholar 

  • Francis, B., & Wonham, W. (1976). The internal model principle of control theory. Automatica, 12(5), 457–465.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, W., Wang, Y., & Homaifa, A. (1995). Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics, 42(2), 117–122.

    Article  Google Scholar 

  • Ginhoux, R. (2003). Compensation des mouvements physiologiques en chirurgie robotisée par commande prédictive. PhD thesis, Université Louis Pasteur Strasbourg.

    Google Scholar 

  • Lopez, P., & Nouri, A.S. (2006). Théorie élémentaire et pratique de la commande par les régimes glissants. Berlin: Springer.

    Google Scholar 

  • Mihoub, M., Nouri, A.S., Abdennour, R.B. (2009). Real-time application of discrete second order sliding mode control to a chemical reactor. Control Engineering Practice, 17(9), 1089–1095.

    Google Scholar 

  • Mihoub, M., Nouri, A.S., & Abdennour, R.B. (2011). Multimodel discrete second order sliding mode control: stability analysis and real time application on a chemical reactor pp. 473–490. In Tech.

    Google Scholar 

  • Monsees, G. (2002). Discrete-time sliding mode control. PHD Thesis, University of Gabes, Tunisia.

    Google Scholar 

  • Romdhane, H., Dehri, K., & Nouri, A. S. (2015). Second order sliding mode control for discrete decouplable multivariable systems via input-output models. International Journal of Automation and Computing, 12(6), 630–638.

    Article  Google Scholar 

  • Sarpturk, S. Z., Istefanopulos, Y., & Kaynak, O. (1987). On the stability of discrete-time sliding mode control systems. IEEE Transactions on Automatic Control, 32, 930–932.

    Article  MATH  Google Scholar 

  • Stoica, C. N. (2008). Robustification de lois de commande prédictives multivariables. Thesis.

    Google Scholar 

  • Xuan, S. M., Xiong, H. X., & Yu, C. B. (2007). Repetitive Learning Control for Time-varying Robotic Systems: A Hybrid Learning Scheme. Automatica, 33(11), 1189–1195.

    MathSciNet  Google Scholar 

  • Xuan, S. M., Jiang, Y. L., & Gang, H. H. (2013). Discrete Adaptive Repetitive Control: Convergence Analysis and Implementation. Acta Automatica Sinica, 39(4), 400–7406.

    Article  MathSciNet  Google Scholar 

  • Yan, T. H., He, B., Chen, X. D., & Xu, X. S. (2013). The discrete-time sliding mode control with computation time delay for repeatable run-out compensation of hard disk drives. Mathematical Problems in Engineering, 2013(2), 1–13.

    Google Scholar 

  • Young, K. D., Utkin, V. I., & Ozguner, U. (1999). A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology, 7(3), 328–342.

    Article  Google Scholar 

  • Yu, X., & Kaynak, O. (2009). Sliding mode control with soft computing: a survey. IEEE Transactions on Industrial Electronics, 56(9).

    Google Scholar 

  • Zhou, K., & Wang, D. (2003). Digital repetitive controlled three-phase PWM rectifier. IEEE Transactions on Power Electronics, 18(1), 309–316.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of the Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Dehri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Dehri, K., Ltaief, M., Nouri, A.S. (2017). Conditions of Disturbances Rejection for Discrete First, Second Order and Repetitive Sliding Mode Controllers. In: Derbel, N., Ghommam, J., Zhu, Q. (eds) Applications of Sliding Mode Control. Studies in Systems, Decision and Control, vol 79. Springer, Singapore. https://doi.org/10.1007/978-981-10-2374-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2374-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2373-6

  • Online ISBN: 978-981-10-2374-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics