Skip to main content

Sliding Bifurcations and Sliding Mode Controller for a Two-Cell DC/DC Buck Converter

  • 1635 Accesses

Part of the Studies in Systems, Decision and Control book series (SSDC,volume 79)

Abstract

In this chapter, we analyze the sliding bifurcations that occur in the two-cell DC/DC buck converter controlled using a dynamic feedback controller, then we apply the sliding mode controller to the converter in order to inhibit bifurcations and chaotic behavior. We use a simplified discrete model to analyze the bifurcations in the two-cell converter, which can be regarded as a piecewise smooth nonlinear system with discontinuous iterated maps. Then, we give theoretical conditions of stability according to the parameters values of the dynamic feedback controller. The presence of discontinuities in the converter leads to several types of non-smooth bifurcations namely border collision bifurcation, degenerate flip bifurcation and sliding bifurcations such as switching-sliding, grazing-sliding and adding-sliding also called multi-sliding. Non-smooth bifurcations, and more particularly, sliding bifurcations are caused by structural changes in the system dynamics, then we apply the sliding mode controller which is a variable structure control system (VSCS) to avoid sliding modes in the DC/DC buck converter. Numerical simulations confirm the analytical results and explain the bifurcations and the strange phenomena encountered in the two-cell converter.

Keywords

  • Sliding bifurcations
  • Two-cell DC/DC buck converter
  • Dynamic feedback controller
  • Sliding mode controller

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-2374-3_13
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-2374-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5
Fig. 13.6
Fig. 13.7
Fig. 13.8
Fig. 13.9
Fig. 13.10
Fig. 13.11
Fig. 13.12
Fig. 13.13
Fig. 13.14
Fig. 13.15
Fig. 13.16
Fig. 13.17
Fig. 13.18
Fig. 13.19
Fig. 13.20
Fig. 13.21
Fig. 13.22
Fig. 13.23
Fig. 13.24

References

  • Ahlborn, A., & Parlitz, U. (2004). Stabilizing unstable steady states using multiple delay feedback control. Physical Review Letters, 93, 264101.

    Google Scholar 

  • Amer, A. F., Sallam, E. A., & Elawady, W. M. (2012). Quasi sliding mode-based single input fuzzy self-tuning decoupled fuzzy PI control for robot manipulators with uncertainty. International Journal of Robust and Nonlinear Control, 22, 2026–2054.

    Google Scholar 

  • Bartolini, G., Ferrara, A., & Usai, E. (1997a). Applications of a sub-optimal discontinuous control algorithm for uncertain second order systems. International Journal of Robust and Nonlinear Control, 7, 299–319.

    Google Scholar 

  • Bartolini, G., Ferrara, A., & Usai, E. (1997b). Output tracking control of uncertain nonlinear second-order systems. Automatica, 33, 2203–2212.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Batzel, J. J., & Tran, H. T. (2000a). Stability of the human respiratory control system I. analysis of a two-dimensional delay state-space model. Journal of Mathematical Biology, 41, 45–79.

    Google Scholar 

  • Batzel, J. J., & Tran, H. T. (2000b). Stability of the human respiratory control system II. analysis of a three-dimensional delay state-space model. Journal of Mathematical Biology, 41, 80–102.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Boiko, I., Castellanos, M. I., & Fridman, L. (2004). Analysis of second order sliding mode algorithms in the frequency domain. IEEE Transactions on Automatic Control, 49, 946–950.

    CrossRef  MathSciNet  Google Scholar 

  • Chen, W.-C. (2008). Dynamics and control of a financial system with time-delayed feedbacks. Chaos, Solitons & Fractals, 37, 1198–1207.

    Google Scholar 

  • de Paula, A. S., & Savi, M. A. (2009). Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method. Chaos, Solitons & Fractals, 42, 2981–2988.

    Google Scholar 

  • Derafa, L., Benallegue, A., & Fridman, L. (2012). Super twisting control algorithm for the attitude tracking of a four rotors UAV. Journal of the Franklin Institute, 349, 685–699.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • di Bernardo, M., Budd, C., & Champneys, A. (1998). Grazing, skipping and sliding: analysis of the non-smooth dynamics of the DC/DC buck converter. Nonlinearity, 11, 858–890.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • di Bernardo, M., Budd, C. J., Champneys, A. R., & Kowalczyk, P. (2008). Piecewise-smooth dynamical systems, theory and applications (Vol. 163)., Applied mathematical sciences. London: Springer.

    Google Scholar 

  • di Bernardo, M., Johansson, K., & Vasca, F. (1999). Sliding orbits and their bifurcations in relay feedback systems. In Proceedings of the 38th IEEE Conference on Decision & Control (pp. 708–713).

    Google Scholar 

  • di Bernardo, M., Johansson, K. H., & Vasca, F. (2001). Self-oscillations and sliding in relay feedback systems: symmetry and bifurcations. International Journal of Bifurcation and Chaos, 11, 1121–1140.

    CrossRef  Google Scholar 

  • di Bernardo, M., & Tse, C. K. (2002). Chaos in circuits and systems, chapter Chaos in power electronics: an overview (pp. 317–340). New York: World Scientific.

    Google Scholar 

  • Edwards, C. (1998). Sliding mode control: theory and applications. London: Taylor and Francis.

    Google Scholar 

  • El-Aroudi, A., Robert, B., & Martínez-Salamero, L. (2006). Modelling and analysis of multi-cell converters using discrete time models. In Proceedings of the IEEE International Symposium on Circuits and Systems, (pp. 2161–2164).

    Google Scholar 

  • El-Aroudi, A., Robert, B. G. M., Cid-Pastor, A., & Martínez-Salamero, L. (2008). Modeling and design rules of a two-cell buck converter under a digital PWM controller. IEEE Transactions on Power Electronics, 23, 859–870.

    Google Scholar 

  • Evangelista, C., Puleston, P., Valenciaga, F., & Fridman, L. (2013). Lyapunov designed super-twisting sliding mode control for wind energy conversion optimization. IEEE Transactions on Industrial Electronics, 60, 538–545.

    CrossRef  Google Scholar 

  • Feki, M., El-Aroudi, A., & Robert, B. G. M. (2007). Multicell dc/dc converter: modeling, analysis and control. Technical report, National Engineering School of Sfax.

    Google Scholar 

  • Fichtner, A., Just, W., & Radons, G. (2004). Analytical investigation of modulated time-delayed feedback control. Journal of Physics A: Mathematical and General, 37, 3385–3391.

    Google Scholar 

  • Gateau, G., Fadel, M., Maussion, P., Bensaid, R., & Meynard, T. A. (2002). Multicell converters: active control and observation of flying-capacitor voltages. IEEE Transactions on Industrial Electronics, 49, 998–1008.

    CrossRef  Google Scholar 

  • Gauthier, D. J. (1998). Controlling lasers by use of extended time-delay autosynchronization. Optics Letters, 23, 703–705.

    CrossRef  Google Scholar 

  • Gjurchinovski, A., Sandev, T., & Urumov, V. (2010). Delayed feedback control of fractional-order chaotic systems. Journal of Physics A: Mathematical and Theoretical, 43, 445102.

    Google Scholar 

  • Goyal, V., Deolia, V. K., & Sharma, T. N. (2015). Robust sliding mode control for nonlinear discrete-time delayed systems based on neural network. Intelligence Control and Automation, 6, 75–83.

    Google Scholar 

  • Guan, X., Feng, G., & Chen, C. (2006). A stabilization method of chaotic systems based on full delayed feedback controller design. Physics Letters A, 348, 210–221.

    CrossRef  MATH  Google Scholar 

  • Guan, X., Feng, G., Chen, C., & Chen, G. (2007). A full delayed feedback controller design method for time-delay chaotic systems. Physica D: Nonlinear Phenomena, 227, 36–42.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Guardia, M., Hogan, S. J., & Seara, T. M. (2010). An analytical approach to codimension-2 sliding bifurcations in the dry-friction oscillator. SIAM Journal of Applied Dynamical Systems, 9, 769–798.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Guendouzi, A., Boubakir, A., & Hamerlain, M. (2013). Higher order sliding mode control of robot manipulator. In Proceedings of the 9th International Conference on Autonomic and Autonomous Systems.

    Google Scholar 

  • Hall, K., Christini, D. J., Tremblay, M., Collins, J. J., Glass, L., & Billette, J. (1997). Dynamic control of cardiac alternans. Physical Review Letters, 78, 4518–4521.

    CrossRef  Google Scholar 

  • Hövel, P. (2011). Control of complex nonlinear systems with delay, chapter Time-delayed feedback control, (pp. 7–36). Berlin: Springer.

    Google Scholar 

  • Jeffrey, M. R., Champneys, A. R., di Bernardo, M., & Shaw, S. W. (2010). Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Physical Review E, 81, 016213.

    CrossRef  Google Scholar 

  • Jovanović, R., & Bučevac, Z. M. (2015). Discrete-time exponentially stabilizing fuzzy sliding mode control via Lyapunov’s method. Advances in Fuzzy Systems.

    Google Scholar 

  • Just, W., Popovich, S., Amann, A., Baba, N., & Schöll, E. (2003). Improvement of time-delayed feedback control by periodic modulation: analytical theory of floquet mode control scheme. Physical Review E, 67, 026222.

    CrossRef  Google Scholar 

  • Kareem, A., & Azeem, M. F. (2012). A novel fuzzy logic based adaptive super-twisting sliding mode control algorithm for dynamic uncertain systems. International Journal of Artificial Intelligence & Applications, 3, 21–34.

    Google Scholar 

  • Khoo, S., Xie, L., Zhao, S., & Man, Z. (2014). Multi-surface sliding control for fast finite-time leader-follower consensus with high order SISO uncertain nonlinear agents. International Journal of Robust and Nonlinear Control, 24, 2388–2404.

    Google Scholar 

  • Konishi, K., Ishii, M., & Kokame, H. (1999). Stability of extended delayed-feedback control for discrete-time chaotic systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46, 1285–1288.

    CrossRef  MATH  Google Scholar 

  • Koubaâ, K., & Feki, M. (2014a). Bifurcation analysis and anti-windup approach for a dynamic PI controller in a switched two-cell DC/DC buck converter. In Proceedings of the 21st Annual Seminar on Automation, Industrial Electronics and Instrumentation.

    Google Scholar 

  • Koubaâ, K., & Feki, M. (2014b). Quasi-periodicity, chaos and coexistence in the time delay controlled two-cell DC-DC buck converter. International Journal of Bifurcation and Chaos, 24, 1450124.

    CrossRef  MATH  Google Scholar 

  • Koubaâ, K., Feki, M., El-Aroudi, A., & Robert, B. G. M. (2009). Coexistence of regular and chaotic behavior in the time-delayed feedback controlled two-cell DC/DC converter. In Proceedings of the 6th International Multi-Conference on Systems, Signals and Devices.

    Google Scholar 

  • Koubaâ, K., Feki, M., El-Aroudi, A., Robert, B. G. M., & Derbel, N. (2010). Stability analysis of a two-cell DC/DC converter using a dynamic time delayed feedback controller. In Proceedings of the 7th International Multi-Conference on Systems, Signals and Devices.

    Google Scholar 

  • Koubaâ, K., Pelaez-Restrepo, J., Feki, M., Robert, B. G. M., & El-Aroudi, A. (2012). Improved static and dynamic performances of a two-cell DC-DC buck converter using a digital dynamic time-delayed control. International Journal of Circuits Theory and Applications, 40, 395–407.

    Google Scholar 

  • Lai, N., Edwards, C., & Spurgeon, S. K. (2006). Discrete output feedback sliding-mode control with integral action. International Journal of Robust and Nonlinear Control, 16, 21–43.

    Google Scholar 

  • Landry, M., Campbell, S. A., Morris, K., & Aguilar, C. O. (2005). Dynamics of an inverted pendulum with delayed feedback control. SIAM Journal of Applied Dynamical Systems, 4, 333–351.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58, 1247–1263.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Levant, A. (2010). Chattering analysis. IEEE Transactions on Automatic Control, 55, 1380–1389.

    CrossRef  MathSciNet  Google Scholar 

  • Levant, A., & Michael, A. (2009). Adjustment of high-order sliding-mode controllers. International Journal of Robust and Nonlinear Control, 19, 1657–1672.

    Google Scholar 

  • Lin, W.-B., & Chiang, H.-K. (2013). Super-twisting algorithm second-order sliding mode control for a synchronous reluctance motor speed drive (p. 632061). Mathematical Problems in Engineering.

    Google Scholar 

  • Liu, R., & Li, S. (2014). Suboptimal integral sliding mode controller design for a class of affine systems. Journal of Optimization Theory and Applications, 161, 877–904.

    Google Scholar 

  • Liu, Y., & Ohtsubo, J. (1994). Experimental control of chaos in a laser-diode interferometer with delayed feedback. Optics Letters, 19, 448–450.

    CrossRef  Google Scholar 

  • Lu, J., Ma, Z., & Li, L. (2009). Double delayed feedback control for the stabilization of unstable steady states in chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 14, 3037–3045.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Lu, X.-Y., & Spurgeon, S. K. (1999). Output feedback stabilization of MIMO non-linear systems via dynamic sliding mode. International Journal of Robust and Nonlinear Control, 9, 275–305.

    Google Scholar 

  • Mahjoub, S., Mnif, F., & Derbel, N. (2015). Second-order sliding mode approaches for the control of a class of underactuated systems. International Journal of Automation and Computing, 12, 134–141.

    Google Scholar 

  • Márquez, R., Tapia, A., Bernal, M., & Fridman, L. (2014). LMI-based second-order sliding set design using reduced order of derivatives. International Journal of Robust and Nonlinear Control. doi:10.1002/rnc.3295. In Press.

  • Matsumoto, T., Chua, L. O., & Kobayashi, K. (1986). Hyperchaos: laboratory experiment and numerical confirmation. IEEE Transactions on Circuits Systems, 33, 1143–1147.

    CrossRef  MathSciNet  Google Scholar 

  • Mihoub, M., Nouri, A. S., & Ben-Abdennour, R. (2009). Real-time application of discrete second order sliding mode control to a chemical reactor. Control Engineering Practice, 17, 1089–1095.

    CrossRef  Google Scholar 

  • Pisano, A., Rapaić, M. R., Jeličiá, Z. D., & Usai, E. (2010). Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics. International Journal of Robust and Nonlinear Control, 20, 2045–2056.

    Google Scholar 

  • Pyragas, K. (1992). Continuous control of chaos by self-controlling feedback. Physics Letters A, 170, 421–428.

    CrossRef  Google Scholar 

  • Pyragas, K. (2002). Analytical properties and optimization of time-delayed feedback control. Physical Review E, 66, 026207.

    CrossRef  Google Scholar 

  • Pyragas, K., & Novičenko, V. (2013). Time-delayed feedback control design beyond the odd-number limitation. Physical Review E, 88, 012903.

    CrossRef  Google Scholar 

  • Raoufi, R., Marquez, H. J., & Zinober, A. S. I. (2010). \({\rm {H}}_{\infty }\) sliding mode observers for uncertain nonlinear lipschitz systems with fault estimation synthesis. International Journal of Robust and Nonlinear Control, 20, 1785–1801.

    Google Scholar 

  • Rivera, J., Chavira, F., Loukianov, A., Ortega, S., & Raygoza, J. J. (2014). Discrete-time modeling and control of a boost converter by means of a variational integrator and sliding modes. Journal of the Franklin Institute, 351, 315–339.

    CrossRef  MATH  Google Scholar 

  • Robert, B., & El-Aroudi, A. (2006). Discrete time model of a multi-cell dc/dc converter: non linear approach. Mathematics and Computers in Simulation, 71, 310–319.

    Google Scholar 

  • Robert, B., Feki, M., & Iu, H. H. C. (2006). Control of a PWM inverter using proportional plus extended time-delayed feedback. International Journal of Bifurcation and Chaos, 16, 113–128.

    CrossRef  MATH  Google Scholar 

  • Saadaoui, H., Djemai, M., Manamanni, N., & Benmansour, K. (2006). Super twisting algorithm observer for a class of switched chaotic systems. In Proceedings of the 2nd International Symposium on Communications, Control and Signal Processing.

    Google Scholar 

  • Salgado, I., Chairez, I., Moreno, J., Fridman, L., & Poznyak, A. (2011). Generalized super-twisting observer for nonlinear systems. In Proceedings of the 18th IFAC World Congress (vol. 18).

    Google Scholar 

  • Santos, I. M. (2006). Modeling and numerical study of nonsmooth dynamical systems. applications to mechanical and power electronic systems. Ph.D. thesis, Spain: Technical University of Catalonia.

    Google Scholar 

  • Sarpturk, S. Z., Istefanopulos, Y., & Kaynak, O. (1987). On the stability of discrete-time sliding mode control systems. IEEE Transactions on Automatic Control, 32, 930–932.

    CrossRef  MATH  Google Scholar 

  • Schikora, S., Hövel, P., Wünsche, H.-J., Schöll, E., & Henneberger, F. (2006). All-optical noninvasive control of unstable steady states in a semiconductor laser. Physical Review Letters, 97, 213902.

    CrossRef  Google Scholar 

  • Shtessel, Y., Plestan, F., and Taleb, M. (2011). Super-twisting adaptive sliding mode control with not-overestimated gains: application to an electropneumatic actuator. In Proceedings of the 18th IFAC World Congress, (vol. 18).

    Google Scholar 

  • Shtessel, Y., Zinober, A. S. I., & Shkolnikov, I. A. (2003). Sliding mode control of boost and buck-boost power converters using the dynamic sliding manifold. International Journal of Robust and Nonlinear Control, 13, 1285–1298.

    Google Scholar 

  • Socolar, J. E. S., Sukow, D. W., & Gauthier, D. J. (1994). Stabilizing unstable periodic orbits in fast dynamical systems. Physical Review E, 50, 3245–3248.

    CrossRef  Google Scholar 

  • Tse, C. K. (2002). Chaos in circuits and systems, chapter experimental techniques for investigating chaos in electronics. New York: World Scientific.

    Google Scholar 

  • Ushio, T. (1996). Limitation of delayed feedback control in nonlinear discrete-time systems. IEEE Transactions on Circuits and Systems I: Fundamental and Theory Applications, 43, 815–816.

    CrossRef  Google Scholar 

  • Utkin, U. (1992). Sliding modes in control and optimization. Berlin: Springer.

    CrossRef  MATH  Google Scholar 

  • Utkin, V. (2013). Sliding mode control of DC/DC converters. Journal of the Franklin Institute, 350, 2146–2165.

    Google Scholar 

  • Xu, C.-J., & Wu, Y.-S. (2014). Chaos control of a chemical chaotic system via time-delayed feedback control method. International Journal of the Automation and Computing, 11, 392–398.

    Google Scholar 

  • Yamamoto, S., Hino, T., & Ushio, T. (2001). Dynamic delayed feedback controllers for chaotic discrete-time systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48, 785–789.

    CrossRef  MATH  Google Scholar 

  • Yuan, G., Banerjee, S., Ott, E., & Yorke, J. A. (1998). Border-collision bifurcations in the buck converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45, 707–716.

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karama Koubaâ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Koubaâ, K. (2017). Sliding Bifurcations and Sliding Mode Controller for a Two-Cell DC/DC Buck Converter. In: Derbel, N., Ghommam, J., Zhu, Q. (eds) Applications of Sliding Mode Control. Studies in Systems, Decision and Control, vol 79. Springer, Singapore. https://doi.org/10.1007/978-981-10-2374-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2374-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2373-6

  • Online ISBN: 978-981-10-2374-3

  • eBook Packages: EngineeringEngineering (R0)