Skip to main content

Sliding Bifurcations and Sliding Mode Controller for a Two-Cell DC/DC Buck Converter

  • Chapter
  • First Online:
Applications of Sliding Mode Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 79))

  • 1803 Accesses

Abstract

In this chapter, we analyze the sliding bifurcations that occur in the two-cell DC/DC buck converter controlled using a dynamic feedback controller, then we apply the sliding mode controller to the converter in order to inhibit bifurcations and chaotic behavior. We use a simplified discrete model to analyze the bifurcations in the two-cell converter, which can be regarded as a piecewise smooth nonlinear system with discontinuous iterated maps. Then, we give theoretical conditions of stability according to the parameters values of the dynamic feedback controller. The presence of discontinuities in the converter leads to several types of non-smooth bifurcations namely border collision bifurcation, degenerate flip bifurcation and sliding bifurcations such as switching-sliding, grazing-sliding and adding-sliding also called multi-sliding. Non-smooth bifurcations, and more particularly, sliding bifurcations are caused by structural changes in the system dynamics, then we apply the sliding mode controller which is a variable structure control system (VSCS) to avoid sliding modes in the DC/DC buck converter. Numerical simulations confirm the analytical results and explain the bifurcations and the strange phenomena encountered in the two-cell converter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlborn, A., & Parlitz, U. (2004). Stabilizing unstable steady states using multiple delay feedback control. Physical Review Letters, 93, 264101.

    Google ScholarĀ 

  • Amer, A. F., Sallam, E. A., & Elawady, W. M. (2012). Quasi sliding mode-based single input fuzzy self-tuning decoupled fuzzy PI control for robot manipulators with uncertainty. International Journal of Robust and Nonlinear Control, 22, 2026ā€“2054.

    Google ScholarĀ 

  • Bartolini, G., Ferrara, A., & Usai, E. (1997a). Applications of a sub-optimal discontinuous control algorithm for uncertain second order systems. International Journal of Robust and Nonlinear Control, 7, 299ā€“319.

    Google ScholarĀ 

  • Bartolini, G., Ferrara, A., & Usai, E. (1997b). Output tracking control of uncertain nonlinear second-order systems. Automatica, 33, 2203ā€“2212.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Batzel, J. J., & Tran, H. T. (2000a). Stability of the human respiratory control system I. analysis of a two-dimensional delay state-space model. Journal of Mathematical Biology, 41, 45ā€“79.

    Google ScholarĀ 

  • Batzel, J. J., & Tran, H. T. (2000b). Stability of the human respiratory control system II. analysis of a three-dimensional delay state-space model. Journal of Mathematical Biology, 41, 80ā€“102.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Boiko, I., Castellanos, M. I., & Fridman, L. (2004). Analysis of second order sliding mode algorithms in the frequency domain. IEEE Transactions on Automatic Control, 49, 946ā€“950.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Chen, W.-C. (2008). Dynamics and control of a financial system with time-delayed feedbacks. Chaos, Solitons & Fractals, 37, 1198ā€“1207.

    Google ScholarĀ 

  • de Paula, A. S., & Savi, M. A. (2009). Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method. Chaos, Solitons & Fractals, 42, 2981ā€“2988.

    Google ScholarĀ 

  • Derafa, L., Benallegue, A., & Fridman, L. (2012). Super twisting control algorithm for the attitude tracking of a four rotors UAV. Journal of the Franklin Institute, 349, 685ā€“699.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • di Bernardo, M., Budd, C., & Champneys, A. (1998). Grazing, skipping and sliding: analysis of the non-smooth dynamics of the DC/DC buck converter. Nonlinearity, 11, 858ā€“890.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • di Bernardo, M., Budd, C. J., Champneys, A. R., & Kowalczyk, P. (2008). Piecewise-smooth dynamical systems, theory and applications (Vol. 163)., Applied mathematical sciences. London: Springer.

    Google ScholarĀ 

  • diĀ Bernardo, M., Johansson, K., & Vasca, F. (1999). Sliding orbits and their bifurcations in relay feedback systems. In Proceedings of the 38th IEEE Conference on Decision & Control (pp. 708ā€“713).

    Google ScholarĀ 

  • di Bernardo, M., Johansson, K. H., & Vasca, F. (2001). Self-oscillations and sliding in relay feedback systems: symmetry and bifurcations. International Journal of Bifurcation and Chaos, 11, 1121ā€“1140.

    ArticleĀ  Google ScholarĀ 

  • diĀ Bernardo, M., & Tse, C. K. (2002). Chaos in circuits and systems, chapter Chaos in power electronics: an overview (pp. 317ā€“340). New York: World Scientific.

    Google ScholarĀ 

  • Edwards, C. (1998). Sliding mode control: theory and applications. London: Taylor and Francis.

    Google ScholarĀ 

  • El-Aroudi, A., Robert, B., & MartĆ­nez-Salamero, L. (2006). Modelling and analysis of multi-cell converters using discrete time models. In Proceedings of the IEEE International Symposium on Circuits and Systems, (pp. 2161ā€“2164).

    Google ScholarĀ 

  • El-Aroudi, A., Robert, B. G.Ā M., Cid-Pastor, A., & MartĆ­nez-Salamero, L. (2008). Modeling and design rules of a two-cell buck converter under a digital PWM controller. IEEE Transactions on Power Electronics, 23, 859ā€“870.

    Google ScholarĀ 

  • Evangelista, C., Puleston, P., Valenciaga, F., & Fridman, L. (2013). Lyapunov designed super-twisting sliding mode control for wind energy conversion optimization. IEEE Transactions on Industrial Electronics, 60, 538ā€“545.

    ArticleĀ  Google ScholarĀ 

  • Feki, M., El-Aroudi, A., & Robert, B. G. M. (2007). Multicell dc/dc converter: modeling, analysis and control. Technical report, National Engineering School of Sfax.

    Google ScholarĀ 

  • Fichtner, A., Just, W., & Radons, G. (2004). Analytical investigation of modulated time-delayed feedback control. Journal of Physics A: Mathematical and General, 37, 3385ā€“3391.

    Google ScholarĀ 

  • Gateau, G., Fadel, M., Maussion, P., Bensaid, R., & Meynard, T. A. (2002). Multicell converters: active control and observation of flying-capacitor voltages. IEEE Transactions on Industrial Electronics, 49, 998ā€“1008.

    ArticleĀ  Google ScholarĀ 

  • Gauthier, D. J. (1998). Controlling lasers by use of extended time-delay autosynchronization. Optics Letters, 23, 703ā€“705.

    ArticleĀ  Google ScholarĀ 

  • Gjurchinovski, A., Sandev, T., & Urumov, V. (2010). Delayed feedback control of fractional-order chaotic systems. Journal of Physics A: Mathematical and Theoretical, 43, 445102.

    Google ScholarĀ 

  • Goyal, V., Deolia, V. K., & Sharma, T. N. (2015). Robust sliding mode control for nonlinear discrete-time delayed systems based on neural network. Intelligence Control and Automation, 6, 75ā€“83.

    Google ScholarĀ 

  • Guan, X., Feng, G., & Chen, C. (2006). A stabilization method of chaotic systems based on full delayed feedback controller design. Physics Letters A, 348, 210ā€“221.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Guan, X., Feng, G., Chen, C., & Chen, G. (2007). A full delayed feedback controller design method for time-delay chaotic systems. Physica D: Nonlinear Phenomena, 227, 36ā€“42.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Guardia, M., Hogan, S. J., & Seara, T. M. (2010). An analytical approach to codimension-2 sliding bifurcations in the dry-friction oscillator. SIAM Journal of Applied Dynamical Systems, 9, 769ā€“798.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Guendouzi, A., Boubakir, A., & Hamerlain, M. (2013). Higher order sliding mode control of robot manipulator. In Proceedings of the 9th International Conference on Autonomic and Autonomous Systems.

    Google ScholarĀ 

  • Hall, K., Christini, D. J., Tremblay, M., Collins, J. J., Glass, L., & Billette, J. (1997). Dynamic control of cardiac alternans. Physical Review Letters, 78, 4518ā€“4521.

    ArticleĀ  Google ScholarĀ 

  • Hƶvel, P. (2011). Control of complex nonlinear systems with delay, chapter Time-delayed feedback control, (pp. 7ā€“36). Berlin: Springer.

    Google ScholarĀ 

  • Jeffrey, M. R., Champneys, A. R., di Bernardo, M., & Shaw, S. W. (2010). Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Physical Review E, 81, 016213.

    ArticleĀ  Google ScholarĀ 

  • Jovanović, R., & Bučevac, Z.Ā M. (2015). Discrete-time exponentially stabilizing fuzzy sliding mode control via Lyapunovā€™s method. Advances in Fuzzy Systems.

    Google ScholarĀ 

  • Just, W., Popovich, S., Amann, A., Baba, N., & Schƶll, E. (2003). Improvement of time-delayed feedback control by periodic modulation: analytical theory of floquet mode control scheme. Physical Review E, 67, 026222.

    ArticleĀ  Google ScholarĀ 

  • Kareem, A., & Azeem, M. F. (2012). A novel fuzzy logic based adaptive super-twisting sliding mode control algorithm for dynamic uncertain systems. International Journal of Artificial Intelligence & Applications, 3, 21ā€“34.

    Google ScholarĀ 

  • Khoo, S., Xie, L., Zhao, S., & Man, Z. (2014). Multi-surface sliding control for fast finite-time leader-follower consensus with high order SISO uncertain nonlinear agents. International Journal of Robust and Nonlinear Control, 24, 2388ā€“2404.

    Google ScholarĀ 

  • Konishi, K., Ishii, M., & Kokame, H. (1999). Stability of extended delayed-feedback control for discrete-time chaotic systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46, 1285ā€“1288.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • KoubaĆ¢, K., & Feki, M. (2014a). Bifurcation analysis and anti-windup approach for a dynamic PI controller in a switched two-cell DC/DC buck converter. In Proceedings of the 21st Annual Seminar on Automation, Industrial Electronics and Instrumentation.

    Google ScholarĀ 

  • KoubaĆ¢, K., & Feki, M. (2014b). Quasi-periodicity, chaos and coexistence in the time delay controlled two-cell DC-DC buck converter. International Journal of Bifurcation and Chaos, 24, 1450124.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • KoubaĆ¢, K., Feki, M., El-Aroudi, A., & Robert, B. G.Ā M. (2009). Coexistence of regular and chaotic behavior in the time-delayed feedback controlled two-cell DC/DC converter. In Proceedings of the 6th International Multi-Conference on Systems, Signals and Devices.

    Google ScholarĀ 

  • KoubaĆ¢, K., Feki, M., El-Aroudi, A., Robert, B. G.Ā M., & Derbel, N. (2010). Stability analysis of a two-cell DC/DC converter using a dynamic time delayed feedback controller. In Proceedings of the 7th International Multi-Conference on Systems, Signals and Devices.

    Google ScholarĀ 

  • KoubaĆ¢, K., Pelaez-Restrepo, J., Feki, M., Robert, B. G. M., & El-Aroudi, A. (2012). Improved static and dynamic performances of a two-cell DC-DC buck converter using a digital dynamic time-delayed control. International Journal of Circuits Theory and Applications, 40, 395ā€“407.

    Google ScholarĀ 

  • Lai, N., Edwards, C., & Spurgeon, S. K. (2006). Discrete output feedback sliding-mode control with integral action. International Journal of Robust and Nonlinear Control, 16, 21ā€“43.

    Google ScholarĀ 

  • Landry, M., Campbell, S. A., Morris, K., & Aguilar, C. O. (2005). Dynamics of an inverted pendulum with delayed feedback control. SIAM Journal of Applied Dynamical Systems, 4, 333ā€“351.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58, 1247ā€“1263.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Levant, A. (2010). Chattering analysis. IEEE Transactions on Automatic Control, 55, 1380ā€“1389.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Levant, A., & Michael, A. (2009). Adjustment of high-order sliding-mode controllers. International Journal of Robust and Nonlinear Control, 19, 1657ā€“1672.

    Google ScholarĀ 

  • Lin, W.-B., & Chiang, H.-K. (2013). Super-twisting algorithm second-order sliding mode control for a synchronous reluctance motor speed drive (p. 632061). Mathematical Problems in Engineering.

    Google ScholarĀ 

  • Liu, R., & Li, S. (2014). Suboptimal integral sliding mode controller design for a class of affine systems. Journal of Optimization Theory and Applications, 161, 877ā€“904.

    Google ScholarĀ 

  • Liu, Y., & Ohtsubo, J. (1994). Experimental control of chaos in a laser-diode interferometer with delayed feedback. Optics Letters, 19, 448ā€“450.

    ArticleĀ  Google ScholarĀ 

  • Lu, J., Ma, Z., & Li, L. (2009). Double delayed feedback control for the stabilization of unstable steady states in chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 14, 3037ā€“3045.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Lu, X.-Y., & Spurgeon, S. K. (1999). Output feedback stabilization of MIMO non-linear systems via dynamic sliding mode. International Journal of Robust and Nonlinear Control, 9, 275ā€“305.

    Google ScholarĀ 

  • Mahjoub, S., Mnif, F., & Derbel, N. (2015). Second-order sliding mode approaches for the control of a class of underactuated systems. International Journal of Automation and Computing, 12, 134ā€“141.

    Google ScholarĀ 

  • MĆ”rquez, R., Tapia, A., Bernal, M., & Fridman, L. (2014). LMI-based second-order sliding set design using reduced order of derivatives. International Journal of Robust and Nonlinear Control. doi:10.1002/rnc.3295. In Press.

  • Matsumoto, T., Chua, L. O., & Kobayashi, K. (1986). Hyperchaos: laboratory experiment and numerical confirmation. IEEE Transactions on Circuits Systems, 33, 1143ā€“1147.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Mihoub, M., Nouri, A. S., & Ben-Abdennour, R. (2009). Real-time application of discrete second order sliding mode control to a chemical reactor. Control Engineering Practice, 17, 1089ā€“1095.

    ArticleĀ  Google ScholarĀ 

  • Pisano, A., Rapaić, M. R., JeličiĆ”, Z. D., & Usai, E. (2010). Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics. International Journal of Robust and Nonlinear Control, 20, 2045ā€“2056.

    Google ScholarĀ 

  • Pyragas, K. (1992). Continuous control of chaos by self-controlling feedback. Physics Letters A, 170, 421ā€“428.

    ArticleĀ  Google ScholarĀ 

  • Pyragas, K. (2002). Analytical properties and optimization of time-delayed feedback control. Physical Review E, 66, 026207.

    ArticleĀ  Google ScholarĀ 

  • Pyragas, K., & Novičenko, V. (2013). Time-delayed feedback control design beyond the odd-number limitation. Physical Review E, 88, 012903.

    ArticleĀ  Google ScholarĀ 

  • Raoufi, R., Marquez, H. J., & Zinober, A. S. I. (2010). \({\rm {H}}_{\infty }\) sliding mode observers for uncertain nonlinear lipschitz systems with fault estimation synthesis. International Journal of Robust and Nonlinear Control, 20, 1785ā€“1801.

    Google ScholarĀ 

  • Rivera, J., Chavira, F., Loukianov, A., Ortega, S., & Raygoza, J. J. (2014). Discrete-time modeling and control of a boost converter by means of a variational integrator and sliding modes. Journal of the Franklin Institute, 351, 315ā€“339.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Robert, B., & El-Aroudi, A. (2006). Discrete time model of a multi-cell dc/dc converter: non linear approach. Mathematics and Computers in Simulation, 71, 310ā€“319.

    Google ScholarĀ 

  • Robert, B., Feki, M., & Iu, H. H. C. (2006). Control of a PWM inverter using proportional plus extended time-delayed feedback. International Journal of Bifurcation and Chaos, 16, 113ā€“128.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Saadaoui, H., Djemai, M., Manamanni, N., & Benmansour, K. (2006). Super twisting algorithm observer for a class of switched chaotic systems. In Proceedings of the 2nd International Symposium on Communications, Control and Signal Processing.

    Google ScholarĀ 

  • Salgado, I., Chairez, I., Moreno, J., Fridman, L., & Poznyak, A. (2011). Generalized super-twisting observer for nonlinear systems. In Proceedings of the 18th IFAC World Congress (vol.Ā 18).

    Google ScholarĀ 

  • Santos, I.Ā M. (2006). Modeling and numerical study of nonsmooth dynamical systems. applications to mechanical and power electronic systems. Ph.D. thesis, Spain: Technical University of Catalonia.

    Google ScholarĀ 

  • Sarpturk, S. Z., Istefanopulos, Y., & Kaynak, O. (1987). On the stability of discrete-time sliding mode control systems. IEEE Transactions on Automatic Control, 32, 930ā€“932.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Schikora, S., Hƶvel, P., WĆ¼nsche, H.-J., Schƶll, E., & Henneberger, F. (2006). All-optical noninvasive control of unstable steady states in a semiconductor laser. Physical Review Letters, 97, 213902.

    ArticleĀ  Google ScholarĀ 

  • Shtessel, Y., Plestan, F., and Taleb, M. (2011). Super-twisting adaptive sliding mode control with not-overestimated gains: application to an electropneumatic actuator. In Proceedings of the 18th IFAC World Congress, (vol.Ā 18).

    Google ScholarĀ 

  • Shtessel, Y., Zinober, A. S. I., & Shkolnikov, I. A. (2003). Sliding mode control of boost and buck-boost power converters using the dynamic sliding manifold. International Journal of Robust and Nonlinear Control, 13, 1285ā€“1298.

    Google ScholarĀ 

  • Socolar, J. E. S., Sukow, D. W., & Gauthier, D. J. (1994). Stabilizing unstable periodic orbits in fast dynamical systems. Physical Review E, 50, 3245ā€“3248.

    ArticleĀ  Google ScholarĀ 

  • Tse, C. K. (2002). Chaos in circuits and systems, chapter experimental techniques for investigating chaos in electronics. New York: World Scientific.

    Google ScholarĀ 

  • Ushio, T. (1996). Limitation of delayed feedback control in nonlinear discrete-time systems. IEEE Transactions on Circuits and Systems I: Fundamental and Theory Applications, 43, 815ā€“816.

    ArticleĀ  Google ScholarĀ 

  • Utkin, U. (1992). Sliding modes in control and optimization. Berlin: Springer.

    BookĀ  MATHĀ  Google ScholarĀ 

  • Utkin, V. (2013). Sliding mode control of DC/DC converters. Journal of the Franklin Institute, 350, 2146ā€“2165.

    Google ScholarĀ 

  • Xu, C.-J., & Wu, Y.-S. (2014). Chaos control of a chemical chaotic system via time-delayed feedback control method. International Journal of the Automation and Computing, 11, 392ā€“398.

    Google ScholarĀ 

  • Yamamoto, S., Hino, T., & Ushio, T. (2001). Dynamic delayed feedback controllers for chaotic discrete-time systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48, 785ā€“789.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Yuan, G., Banerjee, S., Ott, E., & Yorke, J. A. (1998). Border-collision bifurcations in the buck converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45, 707ā€“716.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karama KoubaĆ¢ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

KoubaĆ¢, K. (2017). Sliding Bifurcations and Sliding Mode Controller for a Two-Cell DC/DC Buck Converter. In: Derbel, N., Ghommam, J., Zhu, Q. (eds) Applications of Sliding Mode Control. Studies in Systems, Decision and Control, vol 79. Springer, Singapore. https://doi.org/10.1007/978-981-10-2374-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2374-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2373-6

  • Online ISBN: 978-981-10-2374-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics