Skip to main content

Hessian Matrices of Ray R̄i with Respect to Incoming Ray R̄i-1 and Boundary Variable Vector X̄i

  • Chapter
  • First Online:
  • 2200 Accesses

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 4))

Abstract

As discussed in the previous chapter, the study of optical systems basically involves either systems analysis or systems design. Systems design is the reverse problem of systems analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  1. Lin PD (2014) The derivative matrices of a skew-ray for spherical boundary surfaces and their applications in system analysis and design. Appl Opt 53:3085–3100

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Psang Dain Lin .

Appendices

Appendix 1

To compute the Hessian matrix \( \partial^{2} {\bar{\text{R}}}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) of a ray with respect to boundary variable vector \( {\bar{\text{X}}}_{\text{i}} \) at a spherical boundary surface \( {\bar{\text{r}}}_{\text{i}} \), it is first necessary to compute the following terms:

  1. (1)

    Determination of \( \partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}}^{2} \):

\( \partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}}^{2} \) is a \( 4 \times 4 \times 9 \times 9 \) matrix and can be obtained by further differentiating \( \partial ({}^{0}\bar{\text{A}}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}} \) shown in Eqs. (7.64) to (7.72) of Appendix 2 in Chap. 7 with respect to spherical boundary variable vector \( {\bar{\text{X}}}_{\text{i}} \). A careful examination of Eqs. (7.64) to Eq. (7.72) of Appendix 2 in Chap. 7 shows that the non-zero components of \( \partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}}^{2} \) have the forms

$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\upomega}_{{\text{ix}}} \partial {\upomega}_{{\text{ix}}} }} = \left[ {\begin{array}{*{20}c} 0 & { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} + \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{ix}}} } & { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & { - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} - \text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{ix}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} + \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & { - \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & { - \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(16.29)
$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\upomega}_{{\text{iy}}} \partial {\upomega}_{{\text{ix}}} }} = \left[ {\begin{array}{*{20}c} 0 & {\text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & { - \text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & {\text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & { - {\text{S}}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & {\text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(16.30)
$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\upomega}_{{\text{iz}}} \partial {\upomega}_{{\text{ix}}} }} = \left[ {\begin{array}{*{20}c} 0 & { - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} + \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{ix}}} } & {{\text{S}}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} + \text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & {\text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} + \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{ix}}} } & { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} + {\text{S}}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(16.31)
$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\upomega}_{{\text{ix}}} \partial {\upomega}_{{\text{iy}}} }} = \left[ {\begin{array}{*{20}c} 0 & {\text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & { - \text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & {\text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & { - \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & {\text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(16.32)
$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\upomega}_{{\text{iy}}} \partial {\upomega}_{{\text{iy}}} }} = \left[ {\begin{array}{*{20}c} { - \text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} } & { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ { - \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ {{\text{S}}{\upomega}_{{\text{iy}}} } & { - \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & { - \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(16.33)
$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\upomega}_{{\text{iz}}} \partial {\upomega}_{{\text{iy}}} }} = \left[ {\begin{array}{*{20}c} {{\text{S}}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} } & {\text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & {\text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(16.34)
$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\upomega}_{{\text{ix}}} \partial {\upomega}_{{\text{iz}}} }} = \left[ {\begin{array}{*{20}c} 0 & { - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} + \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{ix}}} } & {\text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} + \text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & {\text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} + \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{ix}}} } & { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} + \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(16.35)
$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\upomega}_{{\text{iy}}} \partial {\upomega}_{{\text{iz}}} }} = \left[ {\begin{array}{*{20}c} {\text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} } & {\text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} } & {\text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(16.36)
$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\upomega}_{{\text{iz}}} \partial {\upomega}_{{\text{iz}}} }} = \left[ {\begin{array}{*{20}c} { - \text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} } & { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} + \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{ix}}} } & { - \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ { - \text{S}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{iy}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{S}{\upomega}_{{\text{ix}}} - \text{C}{\upomega}_{{\text{iz}}} \text{C}{\upomega}_{{\text{ix}}} } & { - \text{S}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{iy}}} \text{C}{\upomega}_{{\text{ix}}} + \text{C}{\upomega}_{{\text{iz}}} \text{S}{\upomega}_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right]. $$
(16.37)
  1. (2)

    Determination of \( \partial^{2} {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \), \( \partial^{2} {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) and \( \partial^{2} {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \):

Differentiating Eq. (7.74) of Appendix 2 in Chap. 7 with respect to spherical boundary variable vector \( {\bar{\text{X}}}_{\text{i}} \) yields

$$ \frac{{\partial^{2} {\bar{\text{P}}}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} = \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }}\left[ {\begin{array}{*{20}c} {{\upsigma}_{\text{i}} } \\ {{\uprho}_{\text{i}} } \\ {{\uptau}_{\text{i}} } \\ 1 \\ \end{array} } \right] + \frac{{\partial ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}\left[ {\begin{array}{*{20}c} {\partial {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} } \\ {\partial {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} } \\ {\partial {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} } \\ {\bar{0}} \\ \end{array} } \right] + \frac{{\partial ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}\left[ {\begin{array}{*{20}c} {\partial {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} } \\ {\partial {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} } \\ {\partial {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} } \\ {\bar{0}} \\ \end{array} } \right] + {}^{0}\bar{\text{A}}_{\text{i}} \left[ {\begin{array}{*{20}c} {\partial^{2} {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} } \\ {\partial^{2} {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} } \\ {\partial^{2} {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} } \\ {\bar{0}} \\ \end{array} } \right], $$
(16.38)

where \( \partial^{2} {\bar{\text{P}}}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) is given in Eq. (16.16). \( \partial^{2} {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \), \( \partial^{2} {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) and \( \partial^{2} {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) can then be determined from

$$ \left[ {\begin{array}{*{20}c} {\partial^{2} {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} } \\ {\partial^{2} {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} } \\ {\partial^{2} {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} } \\ {\bar{0}} \\ \end{array} } \right] = \left( {{}^{0}\bar{\text{A}}_{\text{i}} } \right)^{ - 1} \left( {\frac{{\partial^{2} {\bar{\text{P}}}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} - \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }}\left[ {\begin{array}{*{20}c} {{\upsigma}_{\text{i}} } \\ {{\uprho}_{\text{i}} } \\ {{\uptau}_{\text{i}} } \\ 1 \\ \end{array} } \right] - \frac{{\partial ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}\left[ {\begin{array}{*{20}c} {\partial {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} } \\ {\partial {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} } \\ {\partial {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} } \\ 0 \\ \end{array} } \right] - \frac{{\partial ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}\left[ {\begin{array}{*{20}c} {\partial {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} } \\ {\partial {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} } \\ {\partial {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} } \\ 0 \\ \end{array} } \right]} \right). $$
(16.39)
  1. (3)

    Determination of \( \partial^{2} {\upalpha}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) and \( \partial^{2} {\upbeta}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \):

\( \partial^{2} {\upalpha}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) and \( \partial^{2} {\upbeta}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) can be obtained by differentiating Eqs. (7.76) and (7.77) of Appendix 2 in Chap. 7, respectively, with respect to spherical boundary variable vector \( {\bar{\text{X}}}_{\text{i}} \), yielding

$$ \begin{aligned} \frac{{\partial^{2} {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} & = \frac{1}{{{\upsigma}_{\text{i}}^{ 2} + {\uprho}_{\text{i}}^{ 2} }}\left[ {{\upsigma}_{\text{i}} \frac{{\partial^{2} {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} + \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}\frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} - {\uprho}_{\text{i}} \frac{{\partial^{2} {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} - \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}\frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right] \\ & \quad - \frac{2}{{\left( {{\upsigma}_{\text{i}}^{ 2} + {\uprho}_{\text{i}}^{ 2} } \right)^{2} }}\left[ {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}} \right]\left( {{\upsigma}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} - {\uprho}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right), \\ \end{aligned} $$
(16.40)
$$ \begin{aligned} \frac{{\partial^{2} {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} & = \frac{{\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )}}\frac{{\partial^{2} {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} - \frac{{2\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )^{2} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + {\uptau}_{\text{i}} \frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}} \right)\frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} \\ & \quad + \frac{1}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}} \right)\frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} \\ & \quad - \frac{{{\uptau}_{\text{i}} }}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}\left( {\frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}\frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\upsigma}_{\text{i}} \frac{{\partial^{2} {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} + \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}\frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uprho}_{\text{i}} \frac{{\partial^{2} {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }}} \right) \\ & \quad - \frac{1}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}\frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right) \\ & \quad + \frac{{2{\uptau}_{\text{i}} }}{{\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} } \right)^{2} \sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + {\uptau}_{\text{i}} \frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}} \right)\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right) \\ & \quad + \frac{{{\uptau}_{\text{i}} }}{{\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} } \right)\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)^{{{3 / 2}}} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}} \right)\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right). \\ \end{aligned} $$
(16.41)
  1. (4)

    Determination of \( \partial^{2} {\bar{\text{n}}}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \):

One approach to compute \( \partial^{2} {\bar{\text{n}}}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) is to differentiate Eq. (7.78) of Appendix 2 in Chap. 7 with respect to spherical boundary variable vector \( {\bar{\text{X}}}_{\text{i}} \), to give

$$ \frac{{\partial^{2} {\bar{\text{n}}}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} = \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }}{}^{\text{i}}{\bar{\text{n}}}_{\text{i}} + \frac{{\partial ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}\frac{{\partial ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + \frac{{\partial ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}\frac{{\partial ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {}^{0}\bar{\text{A}}_{\text{i}} \frac{{\partial^{2} ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }}, $$
(16.42)

where

$$ \begin{aligned} \frac{{\partial^{2} ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} & = {\text{s}}_{\text{i}} \left[ {\begin{array}{*{20}c} { - {\text{S}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ { - {\text{S}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ {{\text{C}}{\upbeta}_{\text{i}} } \\ 0 \\ \end{array} } \right]\frac{{\partial^{2} {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} + {\text{s}}_{\text{i}} \left[ {\begin{array}{*{20}c} { - {\text{C}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ {{\text{C}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial^{2} {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} \\ & \quad + {\text{s}}_{\text{i}} \left( {\left[ {\begin{array}{*{20}c} { - {\text{C}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ { - {\text{C}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ { - {\text{S}}{\upbeta}_{\text{i}} } \\ 0 \\ \end{array} } \right]\frac{{\partial {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + \left[ {\begin{array}{*{20}c} {{\text{S}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ { - {\text{S}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}} \right)\frac{{\partial {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} \\ & \quad + {\text{s}}_{\text{i}} \left( {\left[ {\begin{array}{*{20}c} {{\text{S}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ { - {\text{S}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }} + \left[ {\begin{array}{*{20}c} { - {\text{C}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ { - {\text{C}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{X}}}\underline{{_{\text{i}} }} }}} \right)\frac{{\partial {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}. \\ \end{aligned} $$
(16.43)
  1. (5)

    Determination of \( \partial^{2} ({\text{C}}{\uptheta}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}}^{2} \):

The term \( \partial^{2} ({\text{C}}{\uptheta}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}}^{2} \) can be computed from Eq. (7.80) of Appendix 2 in Chap. 7 as

$$ \frac{{\partial^{2} ({\text{C}}{\uptheta}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} = - \left( {{\ell}_{{\text{i} - 1{\text{x}}}} \frac{{\partial^{2} {\text{n}}_{{\text{ix}}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} + {\ell}_{{\text{i} - 1{\text{y}}}} \frac{{\partial^{2} {\text{n}}_{{\text{iy}}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }} + {\ell}_{{\text{i} - 1{\text{z}}}} \frac{{\partial^{2} {\text{n}}_{{\text{iz}}} }}{{\partial {\bar{\text{X}}}_{\text{i}}^{2} }}} \right), $$
(16.44)

where the three components of \( \partial^{2} {\bar{\text{n}}}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}}^{2} \) are given in Eq. (16.42) of this appendix.

Appendix 2

To compute the ray Hessian matrix \( \partial^{2} {\bar{\text{R}}}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) for a spherical boundary surface \( {\bar{\text{r}}}_{\text{i}} \), it is first necessary to determine the following terms:

  1. (1)

    Determination of \( \partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}} {\bar{\text{R}}}_{{{\text{i}} - 1}} \), a matrix with dimensions \( 4 \times 4 \times 9 \times 6 \):

\( {}^{0}\bar{\text{A}}_{\text{i}} \) is not a function of the incoming ray \( {\bar{\text{R}}}_{{{\text{i}} - 1}} \). Therefore, the following equation is obtained:

$$ \frac{{\partial^{2} ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} = \left[ {\begin{array}{*{20}c} {\bar{0}} & {\bar{0}} & {\bar{0}} & {\bar{0}} \\ {\bar{0}} & {\bar{0}} & {\bar{0}} & {\bar{0}} \\ {\bar{0}} & {\bar{0}} & {\bar{0}} & {\bar{0}} \\ {\bar{0}} & {\bar{0}} & {\bar{0}} & {\bar{0}} \\ \end{array} } \right]_{4 \times 4 \times 9 \times 6} . $$
(16.45)
  1. (2)

    Determination of \( \partial^{2} {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \), \( \partial^{2} {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) and \( \partial^{2} {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \):

Differentiating Eq. (7.57) of Appendix 1 in Chap. 7 with respect to spherical boundary variable vector \( {\bar{\text{X}}}_{\text{i}} \) yields

$$ \frac{{\partial^{2} {\bar{\text{P}}}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} = \frac{{\partial ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}\left[ {\begin{array}{*{20}c} {\partial {\upsigma}_{\text{i}} /\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial {\uprho}_{\text{i}} /\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial {\uptau}_{\text{i}} /\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\bar{0}} \\ \end{array} } \right] + {}^{0}\bar{\text{A}}_{\text{i}} \left[ {\begin{array}{*{20}c} {\partial^{2} {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial^{2} {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial^{2} {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\bar{0}} \\ \end{array} } \right], $$
(16.46)

where \( \partial^{2} {\bar{\text{P}}}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) is given in Eq. (16.23). \( \partial^{2} {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \), \( \partial^{2} {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) and \( \partial^{2} {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) can then be determined from

$$ \left[ {\begin{array}{*{20}c} {\partial^{2} {\upsigma}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial^{2} {\uprho}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial^{2} {\uptau}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\bar{0}} \\ \end{array} } \right] = \left( {{}^{0}\bar{\text{A}}_{\text{i}} } \right)^{ - 1} \left( {\frac{{\partial^{2} {\bar{\text{P}}}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} - \frac{{\partial ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}\left[ {\begin{array}{*{20}c} {\partial {\upsigma}_{\text{i}} /\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial {\uprho}_{\text{i}} /\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial {\uptau}_{\text{i}} /\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\bar{0}} \\ \end{array} } \right]} \right). $$
(16.47)
  1. (3)

    Determination of \( \partial^{2} {\upalpha}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) and \( \partial^{2} {\upbeta}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \):

\( \partial^{2} {\upalpha}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) and \( \partial^{2} {\upbeta}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) can be obtained by differentiating Eqs. (7.59) and (7.60) of Appendix 1 in Chap. 7, respectively, with respect to boundary variable vector \( {\bar{\text{X}}}_{\text{i}} \), to give

$$ \begin{aligned} \frac{{\partial^{2} {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} & = \frac{1}{{{\upsigma}_{\text{i}}^{ 2} + {\uprho}_{\text{i}}^{ 2} }}\left[ {\frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}\frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\upsigma}_{\text{i}} \frac{{\partial^{2} {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} - \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}\frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} - {\uprho}_{\text{i}} \frac{{\partial^{2} {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \right] \\ & \quad - \frac{2}{{\left( {{\upsigma}_{\text{i}}^{ 2} + {\uprho}_{\text{i}}^{ 2} } \right)^{2} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right)\left( {{\upsigma}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} - {\uprho}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \right), \\ \end{aligned} $$
(16.48)
$$ \begin{aligned} \frac{{\partial^{2} {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} & = \frac{{\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )}}\frac{{\partial^{2} {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + \frac{1}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right)\frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}\\ & \quad - \frac{{2\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}{{\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} } \right)^{2} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uptau}_{\text{i}} \frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right)\frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \\ & \quad - \frac{{{\uptau}_{\text{i}} }}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}\left( {\frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}\frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\upsigma}_{\text{i}} \frac{{\partial^{2} {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}\frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\uprho}_{\text{i}} \frac{{\partial^{2} {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \right) \\ & \quad - \frac{1}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )\sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}\left( {\frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right)^{\text{T}} \left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \right) \\ & \quad + \frac{{2{\uptau}_{\text{i}} }}{{\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} } \right)^{2} \sqrt {\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uptau}_{\text{i}} \frac{{\partial {\uptau}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right)\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \right) \\ & \quad + \frac{{{\uptau}_{\text{i}} }}{{({\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} + {\uptau}_{\text{i}}^{2} )\left( {{\upsigma}_{\text{i}}^{\text{2}} + {\uprho}_{\text{i}}^{2} } \right)^{{{3 / 2}}} }}\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right)\left( {{\upsigma}_{\text{i}} \frac{{\partial {\upsigma}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\uprho}_{\text{i}} \frac{{\partial {\uprho}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \right). \\ \end{aligned} $$
(16.49)
  1. (4)

    Determination of \( \partial^{2} {\bar{\text{n}}}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \):

\( \partial^{2} {\bar{\text{n}}}_{\text{i}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) can be obtained by differentiating Eq. (7.61) of Appendix 1 in Chap. 7 with respect to \( {\bar{\text{X}}}_{\text{i}} \), to give

$$ \frac{{\partial^{2} {\bar{\text{n}}}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} = \left[ {\begin{array}{*{20}c} {\partial^{2} {\text{n}}_{{\text{ix}}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial^{2} {\text{n}}_{{\text{iy}}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\partial^{2} {\text{n}}_{{\text{iz}}} /\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} } \\ {\bar{0}} \\ \end{array} } \right] = \frac{{\partial ({}^{0}\bar{\text{A}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}\frac{{\partial ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {}^{0}\bar{\text{A}}_{\text{i}} \frac{{\partial^{2} ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}, $$
(16.50)

where \( \partial^{2} ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) is obtained by differentiating Eq. (7.62) of Appendix 1 in Chap. 7, to give

$$ \begin{aligned} \frac{{\partial^{2} ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} & = {\text{s}}_{\text{i}} \left[ {\begin{array}{*{20}c} { - {\text{S}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ { - {\text{S}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ {{\text{C}}{\upbeta}_{\text{i}} } \\ 0 \\ \end{array} } \right]\frac{{\partial^{2} {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\text{s}}_{\text{i}} \left[ {\begin{array}{*{20}c} { - {\text{C}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ {{\text{C}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial^{2} {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \\ & \quad + {\text{s}}_{\text{i}} \left( {\left[ {\begin{array}{*{20}c} { - {\text{C}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ { - {\text{C}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ { - {\text{S}}{\upbeta}_{\text{i}} } \\ 0 \\ \end{array} } \right]\frac{{\partial {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + \left[ {\begin{array}{*{20}c} {{\text{S}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ { - {\text{S}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right)\frac{{\partial {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \\ & \quad + {\text{s}}_{\text{i}} \left( {\left[ {\begin{array}{*{20}c} {{\text{S}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ { - {\text{S}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial {\upbeta}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + \left[ {\begin{array}{*{20}c} { - {\text{C}}{\upbeta}_{\text{i}} {\text{C}}{\upalpha}_{\text{i}} } \\ { - {\text{C}}{\upbeta}_{\text{i}} {\text{S}}{\upalpha}_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right)\frac{{\partial {\upalpha}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}. \\ \end{aligned} $$
(16.51)
  1. (5)

    Determination of \( \partial^{2} ({\text{C}}{\uptheta}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \):

\( \partial^{2} ({\text{C}}{\uptheta}_{\text{i}} )/\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) can be computed from Eq. (7.63) of Appendix 1 in Chap. 7 as

$$ \begin{aligned} \frac{{\partial^{2} ({\text{C}}{\uptheta}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} & = - \left( {{\ell}_{{\text{i} - 1{\text{x}}}} \frac{{\partial^{2} {\text{n}}_{{\text{ix}}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\ell}_{{\text{i} - 1{\text{y}}}} \frac{{\partial^{2} {\text{n}}_{{\text{iy}}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\ell}_{{\text{i} - 1{\text{z}}}} \frac{{\partial^{2} {\text{n}}_{{\text{iz}}} }}{{\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \right) \\ & \quad - \left( {\frac{{\partial {\ell}_{{\text{i - 1x}}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}\frac{{\partial {\text{n}}_{{\text{ix}}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + \frac{{\partial {\ell}_{{\text{i} - 1{\text{y}}}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}\frac{{\partial {\text{n}}_{{\text{iy}}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + \frac{{\partial {\ell}_{{\text{i} - 1{\text{z}}}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}\frac{{\partial {\text{n}}_{{\text{iz}}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right), \\ \end{aligned} $$
(16.52)

where the three components of \( \partial {\bar{\text{n}}}_{\text{i}}/\partial {\bar{\text{X}}}_{\text{i}} \) in Eq. (16.52) are given in Eq. (7.78) of Appendix 2 in Chap. 7, while the three components of \( \partial^{2} {\bar{\text{n}}}_{\text{i}}/\partial {\bar{\text{X}}}_{\text{i}} \partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \) are given in Eq. (16.50) of this appendix.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lin, P.D. (2017). Hessian Matrices of Ray R̄i with Respect to Incoming Ray R̄i-1 and Boundary Variable Vector X̄i . In: Advanced Geometrical Optics. Progress in Optical Science and Photonics, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-2299-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2299-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2298-2

  • Online ISBN: 978-981-10-2299-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics