Advertisement

Interactions of Biomaterial Surfaces with Proteins and Cells

  • Zhonglin Lyu
  • Qian Yu
  • Hong ChenEmail author
Chapter

Abstract

The interactions of material surfaces with proteins and cells play a vital role in various biological phenomena and determine the ultimate biofunctionality of a given material in contact with a given biological environment. In this chapter, we used the gold nanoparticle layer (GNPL) with three-dimensional micro- and nano-sized structures as an example to discuss the interactions of material surfaces with proteins and cells. GNPL is deposited onto a variety of substrates such as gold surface and enzyme-linked immunosorbent assay (ELISA) plate; the amount and activity of the absorbed proteins, as well as cell behaviors including attachment, proliferation, and differentiation on GNPL-modified surfaces, are systematically investigated. In addition, the synthetic effects of surface topography and surface chemistry are also studied. The results show that GNPL improves protein adsorption, favors the maintenance of their conformation and bioactivity, and further enhances cell adhesion. After modification with protein-resistant polymers and specific ligands, GNPL selectively binds certain proteins and cells from protein and cell mixtures, including the highly complex environment of serum. Moreover, under laser irradiation, GNPL shows the ability for the delivery of various macromolecules to different cell types including hard-to-transfect cell types. It is concluded that GNPLs hold great promise in many biomedical fields such as protein detection, regulation of cell behavior, capture of circulating cancer cells, and macromolecular delivery to living cells.

Keywords

Gold nanoparticle layer Topography Surface modification Protein adsorption Cell behavior 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21334004, 21404076) and the Natural Science Foundation of Jiangsu Province (BK20140316). We thank Prof. John Brash for the helpful discussion.

References

  1. 1.
    Yuan L, Yu Q, Li D, Chen H. Surface modification to control protein/surface interactions. Macromol Biosci. 2011;11:1031–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32:3395–403.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen W, Weng S, Zhang F, Allen S, Li X, Bao L, Lam RH, Macoska JA, Merajver SD, Fu J. Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano. 2012;7:566–75.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhou F, Yuan L, Wang H, Li D, Chen H. Gold nanoparticle layer: a promising platform for ultra-sensitive cancer detection. Langmuir. 2011;27:2155–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou F, Wang M, Yuan L, Cheng Z, Wu Z, Chen H. Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst. 2012;137:1779–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou F, Li D, Wu Z, Song B, Yuan L, Chen H. Enhancing specific binding of L929 fibroblasts: effects of multi-scale topography of GRGDY peptide modified surfaces. Macromol Biosci. 2012;12:1391–400.CrossRefPubMedGoogle Scholar
  7. 7.
    Lyu Z, Wang H, Wang Y, Ding K, Liu H, Yuan L, Shi X, Wang M, Wang Y, Chen H. Maintaining the pluripotency of mouse embryonic stem cells on gold nanoparticle layers with nanoscale but not microscale surface roughness. Nanoscale. 2014;6:6959–69.CrossRefPubMedGoogle Scholar
  8. 8.
    Shi X, Wang Y, Li D, Yuan L, Zhou F, Wang Y, Song B, Wu Z, Chen H, Brash JL. Cell adhesion on a POEGMA-modified topographical surface. Langmuir. 2012;28:17011–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Y, Zhou F, Liu X, Yuan L, Li D, Wang Y, Chen H. Aptamer-modified micro/nanostructured surfaces: efficient capture of Ramos cells in serum environment. ACS Appl Mater Interfaces. 2013;5:3816–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang Q, Xu J-J, Liu Y, Chen H-Y. In-situ synthesis of poly (dimethylsiloxane)–gold nanoparticles composite films and its application in microfluidic systems. Lab Chip. 2008;8:352–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Bai H-J, Shao M-L, Gou H-L, Xu J-J, Chen H-Y. Patterned Au/poly (dimethylsiloxane) substrate fabricated by chemical plating coupled with electrochemical etching for cell patterning. Langmuir. 2009;25:10402–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang B, Chen K, Jiang S, Reincke F, Tong W, Wang D, Gao C. Chitosan-mediated synthesis of gold nanoparticles on patterned poly (dimethylsiloxane) surfaces. Biomacromolecules. 2006;7:1203–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol. 2003;21:1192–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Nam J-M, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301:1884–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng. 2001;7:291–301.CrossRefPubMedGoogle Scholar
  16. 16.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–51.CrossRefPubMedGoogle Scholar
  17. 17.
    Roach P, Farrar D, Perry CC. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc. 2006;128:3939–45.CrossRefPubMedGoogle Scholar
  18. 18.
    Eteshola E, Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels. Sensor Actuat B-Chem. 2001;72:129–33.CrossRefGoogle Scholar
  19. 19.
    Jia C-P, Zhong X-Q, Hua B, Liu M-Y, Jing F-X, Lou X-H, Yao S-H, Xiang J-Q, Jin Q-H, Zhao J-L. Nano-ELISA for highly sensitive protein detection. Biosens Bioelectro. 2009;24:2836–41.CrossRefGoogle Scholar
  20. 20.
    Park J-S, Cho MK, Lee EJ, Ahn K-Y, Lee KE, Jung JH, Cho Y, Han S-S, Kim YK, Lee J. A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nat Nanotechnol. 2009;4:259–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Dixit CK, Vashist SK, O’Neill FT, O’Reilly B, MacCraith BD, O’Kennedy R. Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Anal Chem. 2010;82:7049–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Ross AM, Jiang Z, Bastmeyer M, Lahann J. Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small. 2012;8:336–55.CrossRefPubMedGoogle Scholar
  23. 23.
    Dolatshahi-Pirouz A, Jensen T, Kraft DC, Foss M, Kingshott P, Hansen JL, Larsen AN, Chevallier J, Besenbacher F. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces. ACS Nano. 2010;4:2874–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK, Lam RH, Han L, Fan R, Krebsbach PH, Fu J. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano. 2012;6:4094–103.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schulte VA, Díez M, Möller M, Lensen MC. Surface topography induces fibroblast adhesion on intrinsically nonadhesive poly (ethylene glycol) substrates. Biomacromolecules. 2009;10:2795–801.CrossRefPubMedGoogle Scholar
  26. 26.
    Loya MC, Brammer KS, Choi C, Chen L-H, Jin S. Plasma-induced nanopillars on bare metal coronary stent surface for enhanced endothelialization. Acta Biomater. 2010;6:4589–95.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen L, Liu X, Su B, Li J, Jiang L, Han D, Wang S. Aptamer‐mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv Mater. 2011;23:4376–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Sekine J, Luo SC, Wang S, Zhu B, Tseng HR, Yu H. Functionalized conducting polymer nanodots for enhanced cell capturing: the synergistic effect of capture agents and nanostructures. Adv Mater. 2011;23:4788–92.CrossRefPubMedGoogle Scholar
  29. 29.
    Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, Kim K-S. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials. 2010;31:4360–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Cretel E, Pierres A, Benoliel A-M, Bongrand P. How cells feel their environment: a focus on early dynamic events. Cell Mole Bioeng. 2008;1:5–14.CrossRefGoogle Scholar
  31. 31.
    Chen H, Song W, Zhou F, Wu Z, Huang H, Zhang J, Lin Q, Yang B. The effect of surface microtopography of poly (dimethylsiloxane) on protein adsorption, platelet and cell adhesion. Colloid Surf B. 2009;71:275–81.CrossRefGoogle Scholar
  32. 32.
    Yamamoto S, Tanaka M, Sunami H, Arai K, Takayama A, Yamashita S, Morita Y, Shimomura M. Relationship between adsorbed fibronectin and cell adhesion on a honeycomb-patterned film. Surf Sci. 2006;600:3785–91.CrossRefGoogle Scholar
  33. 33.
    Rechendorff K, Hovgaard MB, Foss M, Zhdanov V, Besenbacher F. Enhancement of protein adsorption induced by surface roughness. Langmuir. 2006;22:10885–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Charest JL, Eliason MT, García AJ, King WP. Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates. Biomaterials. 2006;27:2487–94.CrossRefPubMedGoogle Scholar
  35. 35.
    Dalby M, Riehle M, Johnstone H, Affrossman S, Curtis A. Nonadhesive nanotopography: fibroblast response to poly (nbutyl methacrylate)‐poly (styrene) demixed surface features. J Biomed Mater Res A. 2003;67:1025–32.Google Scholar
  36. 36.
    Marcon L, Spriet C, Coffinier Y, Galopin E, Rosnoblet C, Szunerits S, Héliot L, Angrand P-O, Boukherroub R. Cell adhesion properties on chemically micropatterned boron-doped diamond surfaces. Langmuir. 2010;26:15065–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Lagunas A, Comelles J, Martínez E, Samitier J. Universal chemical gradient platforms using poly (methyl methacrylate) based on the biotin− streptavidin interaction for biological applications. Langmuir. 2010;26:14154–61.CrossRefPubMedGoogle Scholar
  38. 38.
    Li B, Chen J, Wang JHC. RGD peptide‐conjugated poly (dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J Biomed Mater Res A. 2006;79:989–98.CrossRefPubMedGoogle Scholar
  39. 39.
    Causa F, Battista E, Della Moglie R, Guarnieri D, Iannone M, Netti PA. Surface investigation on biomimetic materials to control cell adhesion: the case of RGD conjugation on PCL. Langmuir. 2010;26:9875–84.CrossRefPubMedGoogle Scholar
  40. 40.
    Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. 2007;28:2175–82.CrossRefPubMedGoogle Scholar
  41. 41.
    Lord M, Cousins B, Doherty P, Whitelock J, Simmons A, Williams R, Milthorpe B. The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials. 2006;27:4856–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res. 2002;60:86–93.CrossRefPubMedGoogle Scholar
  43. 43.
    Sawyer A, Weeks D, Kelpke S, McCracken MS, Bellis S. The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Biomaterials. 2005;26:7046–56.CrossRefPubMedGoogle Scholar
  44. 44.
    Sawyer AA, Hennessy KM, Bellis SL. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials. 2007;28:383–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang S, Liu K, Liu J, Yu ZTF, Xu X, Zhao L, Lee T, Lee EK, Reiss J, Lee YK. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Edit. 2011;50:3084–8.CrossRefGoogle Scholar
  46. 46.
    Alunni-Fabbroni M, Sandri MT. Circulating tumour cells in clinical practice: methods of detection and possible characterization. Methods. 2010;50:289–97.CrossRefPubMedGoogle Scholar
  47. 47.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Göttert J, McCarley RL, Nikitopoulos D, Murphy MC, Soper SA. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J Am Chem Soc. 2008;130:8633–41.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fischer KE, Alemán BJ, Tao SL, Daniels RH, Li EM, Bünger MD, Nagaraj G, Singh P, Zettl A, Desai TA. Biomimetic nanowire coatings for next generation adhesive drug delivery systems. Nano Lett. 2009;9:716–20.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Medley CD, Bamrungsap S, Tan W, Smith JE. Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem. 2011;83:727–34.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Qin Z, Bischof JC. Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev. 2012;41:1191–217.CrossRefPubMedGoogle Scholar
  52. 52.
    Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev. 2013;113:1904–2074.CrossRefPubMedGoogle Scholar
  53. 53.
    Delcea M, Sternberg N, Yashchenok AM, Georgieva R, Bäumler H, Möhwald H, Skirtach AG. Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells. ACS Nano. 2012;6:4169–80.CrossRefPubMedGoogle Scholar
  54. 54.
    Xiong R, Raemdonck K, Peynshaert K, Lentacker I, De Cock I, Demeester J, De Smedt SC, Skirtach AG, Braeckmans K. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano. 2014;8:6288–96.CrossRefPubMedGoogle Scholar
  55. 55.
    Vogel A, Noack J, Hüttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B. 2005;81:1015–47.CrossRefGoogle Scholar
  56. 56.
    Baumgart J, Humbert L, Boulais É, Lachaine R, Lebrun J-J, Meunier M. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells. Biomaterials. 2012;33:2345–50.CrossRefPubMedGoogle Scholar
  57. 57.
    Lyu Z, Zhou F, Liu Q, Xue H, Yu Q, Chen H. A universal platform for macromolecular deliveryinto cells using gold nanoparticle layers via the photoporation effect. Adv Funct Mater. 2016;26:5787–95.CrossRefGoogle Scholar
  58. 58.
    Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115:216–25.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina

Personalised recommendations