Skip to main content

Structured Sparsity via Half-Quadratic Minimization

  • Conference paper
  • First Online:
Book cover Advances in Image and Graphics Technologies (IGTA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 634))

Included in the following conference series:

  • 727 Accesses

Abstract

This paper proposes a general framework for the problem of structured sparsity via half-quadratic (HQ) minimization. Based on the theory of convex conjugacy, we firstly define an \(l_{2,1}^\varepsilon \)-norm and induce a family of penalty functions for structured sparsity. Then we build and discuss some important properties of these functions. By introducing the multiplicative auxiliary variable in HQ, we further reformulate the structured sparsity problem as an augmented half-quadratic optimization problem, and propose a general iteratively reweighted framework to alternately minimize the cost function. The proposed framework can be used in sparse representation, group sparse representation and multi-task joint sparse representation. Finally, in terms of the task of multi-biometric information fusion, we apply our proposed methods to obtain a novel fusion strategy, named structured fusion. Experimental results on the multi-biometric problems corroborate our claims and validate the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, F.R.: Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res. 9, 1179–1225 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  3. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872 (2008)

    Google Scholar 

  4. Daubechies, I., Devore, R., Fornasier, M., Gunturk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fornasier, M.: Theoretical Foundations and Numerical Methods for Sparse Recovery. Walter de Gruyter, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Fornasier, M., Rauhut, H., Ward, R.: Low-rank matrix recovery via iteratively reweighted least squares minimization. SIAM J. Optim. 21(4), 1614–1640 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, R., Sun, Z., Tan, T., Zheng, W.-S.: Recovery of corrupted low-rank matrices via half-quadratic based nonconvex minimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2889–2896 (2011)

    Google Scholar 

  8. He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1561–1576 (2011)

    Article  Google Scholar 

  9. Jenatton, R., Audibert, J.-Y., Bach, F.: Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res. 12, 2777–2824 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component analysis. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (2009)

    Google Scholar 

  11. Li, A., Shan, S., Chen, X., Gao, W.: Face recognition based on non-corresponding region matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1060–1067 (2011)

    Google Scholar 

  12. Moayedi, F., Azimifar, Z., Boostani, R.: Structured sparse representation for human action recognition. Neurocomputing 161, 38–46 (2015)

    Article  Google Scholar 

  13. Morales, J., Micchelli, C.A., Pontil, M.: A family of penalty functions for structured sparsity. In: Advances in Neural Information Processing Systems, pp. 1612–1623 (2010)

    Google Scholar 

  14. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint \(l_{2,1}\)-norms minimization. In: Advances in Neural Information Processing Systems, pp. 1813–1821 (2010)

    Google Scholar 

  15. Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27(3), 937–966 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pillai, J.K., Patel, V.M., Chellappa, R., Ratha, N.K.: Secure and robust iris recognition using random projections and sparse representations. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1877–1893 (2011)

    Article  Google Scholar 

  17. Suk, H.-I., Wee, C.-Y., Lee, S.-W., Shen, D.: Supervised discriminative group sparse representation for mild cognitive impairment diagnosis. Neuroinformatics 13(3), 277–295 (2015)

    Article  Google Scholar 

  18. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2892–2900 (2015)

    Google Scholar 

  19. Wang, L., Pan, C.: Visual tracking via manifold regularized local structured sparse representation model. In: IEEE International Conference on Image Processing, pp. 1150–1154 (2015)

    Google Scholar 

  20. Wipf, D., Nagarajan, S.: Iterative reweighted \(l_1\) and \(l_2\) methods for finding sparse solutions. IEEE J. Sel. Top. Signal Process. 4(2), 317–329 (2010)

    Article  Google Scholar 

  21. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  22. Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 625–632 (2011)

    Google Scholar 

  23. Yuan, X., Liu, X., Yan, S.: Visual classification with multitask joint sparse representation. IEEE Trans. Image Process. 21, 4349–4360 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zhang, H., Nasrabadi, N.M., Zhang, Y., Huang, T.S.: Joint dynamic sparse representation for multi-view face recognition. Pattern Recogn. 45(4), 1290–1298 (2012)

    Article  Google Scholar 

  25. Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis. Comput. 15(1), 59–76 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Wei, J., Li, Z., Cao, D., Zhang, M., Zeng, C. (2016). Structured Sparsity via Half-Quadratic Minimization. In: Tan, T., et al. Advances in Image and Graphics Technologies. IGTA 2016. Communications in Computer and Information Science, vol 634. Springer, Singapore. https://doi.org/10.1007/978-981-10-2260-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2260-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2259-3

  • Online ISBN: 978-981-10-2260-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics