Skip to main content

Visible Light Based Throughput Downlink Connectivity for the Cognitive Radio Networks

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

The research and implementation of Internet of things (IoT) concept have proliferated ever since the cognitive radio (CR) dimension was introduced. Nevertheless the status quo of the congested communication landscape imposes a great challenge on the connectivity of a raft of heterogeneous devices, which arguably defeats the purpose of IoT. New protocols that improve the CR networks’ downlink connectivity are thus being spawned. Visible light communication (VLC), widely seen as the most promising candidate, wants the talk among things to go not just via radio. Based upon VLC technique, a downlink connectivity improvement paradigm, namely, visible light (VL) based throughput downlink connectivity for the CR networks (\( {\text{CR}}_{downlink}^{VL} \))is proposed in this chapter. We first motivate the use of VLC technology in IoT communications from various viewpoints, including background, radio spectrum management, and complementary VL perspectives. Then, a systematic overview of VLC and the associated physical- and link-layer characteristics are briefly discussed. After that, a \( {\text{CR}}_{downlink}^{VL} \) communication architecture for smart home environment is presented. Finally the outlined challenges and possible future research avenues close this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., Mohanty, S.: NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Netw. 50, 2127–2159 (2006)

    Article  MATH  Google Scholar 

  2. Akyildiz, I.F., Lee, W.Y., Chowdhury, K.R.: CRAHNs: cognitive radio ad hoc networks. Ad Hoc Netw. 7, 810–836 (2009)

    Article  Google Scholar 

  3. Akyildiz, I.F., Lo, B.F., Balakrishnan, R.: Cooperative spectrum sensing in cognitive radio networks: a survey. Phys. Commun. 4, 40–62 (2011)

    Article  Google Scholar 

  4. Almeida, R., Louro, P., Vieira, M.A., Vieira, M.: Visible light communication in traffic links using an a-SiC: H multilayer photodetector. Procedia Technol. 17, 550–556 (2014)

    Article  Google Scholar 

  5. Arnon, S.: Optimised optical wireless car-to-traffic-light communication. Trans. Emerg. Telecommun. Technol. 25, 660–665 (2014)

    Article  Google Scholar 

  6. Arredondo, B., Romero, B., Pena, J.M.S., Fernández-Pacheco, A., Alonso, E., Vergaz, R., Dios, Cd: Visible light communication system using an organic bulk heterojunction photodetector. Sensors 13, 12266–12276 (2013)

    Article  Google Scholar 

  7. Bauer, H., Patel, M., Veira, J.: The Internet of Thins: Sizing Up the Opportunity McKinsey & Company, pp. 1–7 (2014)

    Google Scholar 

  8. Bell, A., Adams, W., Preece, W.: Discussion on the photophone and the conversion of radiant energy into sound. J. Soc. Telegraph Engineers 9, 375–383 (1880)

    Article  Google Scholar 

  9. Berman, S.M., Greehouse, D.S., Bailey, I.L., Clear, R.D., Raasch, T.W.: Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources. Optom. Vis. Sci. 68, 645–662 (1991)

    Article  Google Scholar 

  10. Chen, R., Park, J.M., Hou, Y.T., Reed, J.H.: Toward secure distributed spectrum sensing in cognitive radio networks. IEEE Commun. Mag., 50–55 (2008)

    Google Scholar 

  11. Clancy, T.C., Goergen, N.: Security in cognitive radio networks: threats and mitigation. In: Proceedings of 3rd International IEEE Conference on Cognitive Radio Oriented Wireless Networks and Communications, Singapore, pp. 1–8

    Google Scholar 

  12. Ding, W., Yang, F., Yang, H., Wang, J., Wang, X., Zhang, X., Song, J.: A hybrid power line and visible light communication system for indoor hospital applications. Comput. Ind. 68, 170–178 (2015)

    Article  Google Scholar 

  13. Elgala, H., Mesleh, R., Haas, H.: Indoor broadcasting via white LEDs and OFDM. IEEE Trans. Consum. Electron. 55, 1127–1134 (2009)

    Article  Google Scholar 

  14. Ergul, O., Dinc, E., Akan, O.B.: Communicate to illuminate: state-of-the-art and research challenges for visible light communications. Phys. Commun. 17, 72–85 (2015)

    Article  Google Scholar 

  15. Fath, T., Haas, H.: Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 61, 733–742 (2013)

    Article  Google Scholar 

  16. Gardner, W.A.: Exploitation of spectral redudancy in cyclostationary signals. IEEE Signal Process. Mag. 8, 14–36 (1991)

    Article  Google Scholar 

  17. George, J.J., Mustafa, M.H., Osman, N.M., Ahmed, N.H., Hamed, DaM: A survey on visible light communication. Int. J. Eng. Comput. Sci. 3, 3805–3808 (2014)

    Google Scholar 

  18. Groth, M.: Photophones Revisted. Amateur Radio Magazine, pp. 12–17. Wireless Institute of Australia, Melbourne (1987)

    Google Scholar 

  19. Haruyama, S., Yamazato, T.: Image sensor based visible light communication. In: Arnon, S. (ed.) Visible light communication. Cambridge University Press, ISBN: 978-1-107-06155-2, University Printing House, Cambridge CB2 8BS, United Kingdom (2015)

    Google Scholar 

  20. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23, 201–220 (2005)

    Article  Google Scholar 

  21. Home Gigabit Access (OMEGA) Project

    Google Scholar 

  22. Institute of Electrical and Electronics Engineers (IEEE) (2011) 802.15.7 IEEE standard for local and metropolitan area networks–part 15.7: short-range wireless optical communication using visible light

    Google Scholar 

  23. Jackson, D., Buffaloe, T., Leeb, S.: Fiat lux: a fluorescent lamp digital transceiver. IEEE Trans. Ind. Appl. 34, 625–630 (1998)

    Article  Google Scholar 

  24. Jivkova, S., Kavehrad, M.: Transceiver design concept for cellular and multispot diffusing regimes of transmission. EURASIP J. Appl. Sig. Process. 1, 30–38 (2005)

    MATH  Google Scholar 

  25. Jondral, F.K.: Software-defined radio: basics and evolution to cognitive radio. EURASIP J. Wirel. Commun. Netw., 275–283 (2005)

    Google Scholar 

  26. Komine, T., Nakagawa, M.: A study of shadowing on indoor visiblelight wireless communication utilizing plural white LED lighings. In: Proceedings of 1st International Symposium on Wireless Communication System, pp. 36–40 (2004)

    Google Scholar 

  27. Kumar, K., Prakash, A., Tripathi, R.: Spectrum handoff in cognitive radio networks: a classification and comprehensive survey. J of Network and Computer Applications 61, 161–188 (2016)

    Article  Google Scholar 

  28. Kumar, N., Lourenço, N.R.: Led-based visible light communication system: a brief survey and investigation. J. Eng. Appl. Sci. 5, 296–307 (2010)

    Article  Google Scholar 

  29. Le, N.-T., Jang, Y.M.: Resource allocation for multichannel broadcasting visible light communication. Opt. Commun. 355, 451–461 (2015)

    Article  Google Scholar 

  30. Mathur, C.N., Subbalakshmi, K.P.: Digital signatures for centralized DSA networks. In: Proceedings of 4th IEEE Conference on Consumer Communications and Networking, pp 1037–1041 (2007)

    Google Scholar 

  31. Medina, C., Zambrano, M., Navarro, K.: LED based visible light communication: technology, applications and challenges—a survey. Int. J. Adv. Eng. Technol. 8, 482–495 (2015)

    Google Scholar 

  32. Mitola, J., Maguire, G.Q.: Cognitive radios: making software radios more personal. IEEE Pers. Commun. 6, 13–18 (1999)

    Article  Google Scholar 

  33. Mitola, J.: Software Radio Architecture: Object-Oriented Approaches to Wireless Systems Engineering. Wiley-Interscience (2000)

    Google Scholar 

  34. Mitola, J.: Cognitive radio: an integrated agent architecture for software defined radio. KTH Royal Institute of Technology, Stockholm, Sweden (2000)

    Google Scholar 

  35. Nakajima, M., Haruyama, S.: New indoor navigation system for visually impaired people using visible light communication. EURASIP J. Wirel. Commun. Netw. 37, 1–10 (2013)

    Google Scholar 

  36. Ntogari, G., Kamalakis, T., Sphicopoulos, T.: Performance analysis of space time block coding techniques for indoor optical wireless systems. IEEE J. Sel. Areas Commun. Strat. 27, 1545–1552 (2009)

    Article  Google Scholar 

  37. Pang, G., Kwan, T., Chan, C.H., Liu, H.: Led traffic light as a communications device. In: IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, Tokyo, Japan, pp 788–793 (1999)

    Google Scholar 

  38. Parvin, S., Hussain, F.K., Hussain, O.K., Han, S., Tian, B., Chang, E.: Cognitive radio network security: a survey. J. Netw. Comput. Appl. 35, 1691–1708 (2012)

    Article  Google Scholar 

  39. Pathak, P.H., Feng, X., Hu, P., Mohapatra, P.: Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17, 2017–2077 (2015)

    Article  Google Scholar 

  40. Quintana, C., Guerra, V., Rufo, J., Rabadan, J., Perez-Jimenez, R.: Reading lamp-based visible light communication system for in-flight entertainment. IEEE Trans. Consum. Electron. 59, 31–37 (2013)

    Article  Google Scholar 

  41. Rea, M.S.: The IESNA Lighting Handbook: Reference & Application. Illuminating Engineering Society, North America, New York, USA (2000)

    Google Scholar 

  42. Reyes, H., Subramaniam, S., Kaabouch, N., Hu, W.C.: A spectrum sensing technique based on autocorrelation and Euclidean distance and its comparison with energy detection for cognitive radio networks. Comput. Electr. Eng. (in press)

    Google Scholar 

  43. Saleem, Y., Salim, F., Rehmani, M.H.: Routing and channel selection from cognitive radio network’s perspective: a survey. Comput. Electr. Eng. 42, 117–134 (2015)

    Article  Google Scholar 

  44. Schubert, E.F.: Light-Emitting Diodes, 2nd edn. Cambridge University Press, ISBN 978-0-511-34476-3, The Edinburgh Building, Cambridge CB2 8RU, UK (2006)

    Google Scholar 

  45. Sharifi, A.A., Sharifi, M., Niya, M.J.M.: Secure cooperative spectrum sensing under primary user emulation attack in cognitive radio networks: attack-aware threshold selection approach. Int. J. Electron. Commun. (AEÜ) 70, 95–104 (2016)

    Article  Google Scholar 

  46. Soa, J., Kwon, T.: Limited reporting-based cooperative spectrum sensing for multiband cognitive radio networks. Int. J. Electron. Commun. (AEÜ) 70, 386–397 (2016)

    Article  Google Scholar 

  47. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and challenges for realising the Internet of things. European Commission—Information Society and Media DG, Brussels, Belgium (2010)

    Google Scholar 

  48. Economist, The: Smart Products, Smart Makers. The Economist 417, 65 (2015)

    Google Scholar 

  49. The Economist: Wireless: the next generation The Economist, pp. 53–54 (2016)

    Google Scholar 

  50. Tsonev, D., Videv, S., Haas, H.: Light fidelity (Li-Fi): towards alloptical networking In: Proceedings of SPIE OPTO, Art ID 900702 (2013)

    Google Scholar 

  51. United States Department of Energy: Energy savings forecast of solid-state lighting in general illumination applications (2016)

    Google Scholar 

  52. Visible Light Communications Consortium (VLCC)

    Google Scholar 

  53. Yamazato, T., Takai, I., Okada, H., Fujii, T., Yendo, T., Arai, S., Andoh, M., Harada, T., Yasutomi, K., Kagawa, K., Kawahito, S.: Image-sensor-based visible light communication for automotive applications. IEEE Commun. Mag., 88–97 (2014)

    Google Scholar 

  54. Yau, K.-L.A., Ramli, N., Hashim, W., Mohamad, H.: Clustering algorithms for cognitiver radio networks: a survey. J. Netw. Comput. Appl. 45, 19–95 (2014)

    Article  Google Scholar 

  55. Yu, Z., Baxley, R., Zhou, G.: Multi-user MISO broadcasting for indoor visible light communication. In: Proceedings of IEEE ICASSP, May 2013, pp. 4849–4853 (2013)

    Google Scholar 

  56. Yücek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11, 116–130 (2009)

    Article  Google Scholar 

  57. Zarrin, S.: Spectrum Sensing in Cognitive Radio Networks. Department of Electrical and Computer Engineering. University of Toronto (2011)

    Google Scholar 

  58. Zeng, Y., Liang, Y.: Spectrum-sensing algorithms for cognitive radio based on statistical covariances. IEEE Trans. Veh. Technol. 58, 1804–1815 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Xing, B. (2017). Visible Light Based Throughput Downlink Connectivity for the Cognitive Radio Networks. In: Matin, M. (eds) Spectrum Access and Management for Cognitive Radio Networks. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2254-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2254-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2253-1

  • Online ISBN: 978-981-10-2254-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics