Advertisement

Introduction to Tongue Image Analysis

  • David ZhangEmail author
  • Hongzhi Zhang
  • Bob Zhang
Chapter

Abstract

Tongue diagnosis is one of the most important and widely used diagnostic methods in Chinese medicine. Visual inspection of the human tongue offers a simple, immediate, inexpensive, and noninvasive solution for various clinical applications and self-diagnosis. Increasingly, powerful information technologies have made it possible to develop a computerized tongue diagnosis (CTD) system that is based on digital image processing and analysis. In this chapter, we first introduced the current state of knowledge on tongue diagnosis and CTD. Then, for the computational perspective, we provided brief surveys on the progress of tongue image analysis technologies including tongue image acquisition, preprocessing, and diagnosis classification.

Keywords

Traditional Chinese Medicine Active Contour Model Color Correction Texture Feature Extraction Human Tongue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Haller, J. S. (1982). The foul tongue: A 19th century index of disease. Western Journal of Medicine, 137(3), 258–264.Google Scholar
  2. Reamy, B. V., Richard, D., & Bunt, C. W. (2010). Common tongue conditions in primary care. American Family Physician, 81(5), 627–634.Google Scholar
  3. Matison, R., Mayeux, R., Rosen, J., & Fahn, S. (1982). “Tip-of-the-tongue” phenomenon in Parkinson disease. Neurology, 32(5), 567–570.CrossRefGoogle Scholar
  4. Jeghers, H. (1942). Nutrition: The appearance of the tongue as an index of nutritional deficiency. New England Journal of Medicine, 227, 221–228.CrossRefGoogle Scholar
  5. Faria, P. D., Vargas, P. A., Saldiva, P., Böhm, G. M., Mauad, T., & Almeida, O. D. (2005). Tongue disease in advanced AIDS. Oral Diseases, 11(2), 72–80.CrossRefGoogle Scholar
  6. Peng, B., & Xie, S. (2006). Atlas of tongue diagnosis for AIDS patients. Shelton: People’s Medical Publishing House.Google Scholar
  7. Ozgursoy, O. B., Ozgursoy, S. K., Tulunay, O., Kemal, O., Akyol, A., & Dursun, G. (2009). Melkersson-Rosenthal syndrome revisited as a misdiagnosed disease. American Journal of Otolaryngology, 30(1), 33–37. Google Scholar
  8. Avraham, K. B., Schickler, M., Sapoznikov, D., Yarom, R., & Groner, Y. (1988). Down’s syndrome: Abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu/Zn-superoxide dismutase. Cell, 54(6), 823–829.CrossRefGoogle Scholar
  9. Farman, A. G. (1976). Atrophic lesions of the tongue: A prevalence study among 175 diabetic patients. Journal of Oral Pathology, 5(5), 255–264.CrossRefGoogle Scholar
  10. Grushka, M. W., Ching, V., & Polak, S. (2007). Retrospective study: Prevalence of geographic and fissured tongue in patients with burning mouth syndrome. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology & Endodontology, 103(6), 789.CrossRefGoogle Scholar
  11. Zargari, O. (2006). The prevalence and significance of fissured tongue and geographical tongue in psoriatic patients. Clinical and Experimental Dermatology, 31(2), 192–195.CrossRefGoogle Scholar
  12. Scheper, M. A., Nikitakis, N. G., Sarlani, E., Sauk, J. J., & Meiller, T. F. (2006). Cowden syndrome: Report of a case with immunohistochemical analysis and review of the literature. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology & Endodontology, 101(101), 625–631.Google Scholar
  13. Han, S., Yang, X. I., Quan, Q. I., Pan, Y., Chen, Y., Shen, J., et al. (2016). Potential screening and early diagnosis method for cancer: Tongue diagnosis. International Journal of Oncology, 48(6), 2257–2264.Google Scholar
  14. Maciocia, G. (1995). Tongue diagnosis in Chinese medicine. Seattle: Eastland Press.Google Scholar
  15. Maciocia, G. (2004). Diagnosis in Chinese medicine: A comprehensive guide. London: Churchill Livingstone.Google Scholar
  16. Giovanni, M. (2015). The foundations of Chinese medicine. Elsevier Science Health Science Div.Google Scholar
  17. Tang, J.-L., Liu, B.-Y., & Ma, K.-W. (2008). Traditional Chinese medicine. Lancet, 372(8), 1938–1940.Google Scholar
  18. Fei, Z., & Gu, Y. (2007). Mirror of health: Tongue diagnosis in Chinese medicine. Beijing, China: People’s Medical Publishing House.Google Scholar
  19. Yang, Z. H., Zhang, D. P., & Nai-Min, L. I. (2009). Physiological and pathological tongueprint images of human body. Journal of Harbin Institute of Technology, 41(12), 73–77.Google Scholar
  20. Pang, B., Zhang, D., & Wang, K. (2005). Tongue image analysis for appendicitis diagnosis. Information Sciences, 175(3), 160–176.Google Scholar
  21. Huang, B., Wu, J., Zhang, D., & Li, N. (2010). Tongue shape classification by geometric features. Information Sciences an International Journal, 180(2), 312–324.Google Scholar
  22. Nai-Min, L. I., Zhang, D., & Kuan-Quan, W. (2011). Tongue diagnostics. Academy Press (Xue Yuan).Google Scholar
  23. Lukman, S., He, Y., & Hui, S. C. (2008). Computational methods for traditional Chinese medicine: A survey. Computer Methods and Programs in Biomedicine, 88(3), 283–294.CrossRefGoogle Scholar
  24. Feng, Y., Wu, Z., Zhou, X., Zhou, Z., & Fan, W. (2006). Knowledge discovery in traditional Chinese medicine: State of the art and perspectives. Artificial Intelligence in Medicine, 38(3), 219–236.Google Scholar
  25. Chiu, C. (1996). The development of a computerized tongue diagnosis system. Biomedical Engineering Applications Basis Communications, 8, 342–350.Google Scholar
  26. Pang, B., et al. (2004). Computerized tongue diagnosis based on Bayesian networks. IEEE Transactions on Biomedical Engineering, 51(10), 1803–1810.CrossRefGoogle Scholar
  27. Chiu, C. (2000). A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue. Computer Methods and Programs in Biomedicine, 61(2), 77–89.CrossRefGoogle Scholar
  28. Zhang, D., Pang, B., Li, N., Wang, K., & Zhang, H. (2005). Computerized diagnosis from tongue appearance using quantitative feature classification. The American Journal of Chinese Medicine, 33(06), 859–866.Google Scholar
  29. Zhang, H. Z., Wang, K. Q., Zhang, D., Pang, B., & Huang, B. (2005). Computer aided tongue diagnosis system (pp. 6754–6757). IEEE.Google Scholar
  30. Sonka, M., Hlavac, V., & Boyle, R. (2014). Image processing, analysis, and machine vision. Australia: Cengage Learning.Google Scholar
  31. Gonzalez, R. C., & Woods, R. E. (2007). Digital image processing (3rd ed): Upper Saddle River, NJ: Prentice Hall.Google Scholar
  32. Anzai, Y. (2012). Pattern recognition and machine learning. Amsterdam: Elsevier.Google Scholar
  33. Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. New York: Wiley.Google Scholar
  34. Chang, C. (2003). Hyperspectral imaging: Techniques for spectral detection and classification (Vol. 1). Springer Science & Business Media.Google Scholar
  35. Kim, M. S., Chen, Y. R., & Mehl, P. M. (2001). Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the ASAE, 44(3), 721.Google Scholar
  36. Mooradian, G., Weiderhold, M., Dabiri, A. E., & Coyle, C. (1998). Hyperspectral imaging methods and apparatus for non-invasive diagnosis of tissue for cancer. Google Patents.Google Scholar
  37. Vo-Dinh, T. (2004). A hyperspectral imaging system for in vivo optical diagnostics. Engineering in Medicine and Biology Magazine, IEEE, 23(5), 40–49.CrossRefGoogle Scholar
  38. Zavattini, G., Vecchi, S., Mitchell, G., Weisser, U., Leahy, R. M., Pichler, B. J., et al. (2006). A hyperspectral fluorescence system for 3D in vivo optical imaging. Physics in Medicine & Biology, 51(8), 2029.CrossRefGoogle Scholar
  39. Du, H., et al. (2007). A novel hyperspectral medical sensor for tongue diagnosis. Sensor Review, 27(1), 57–60.CrossRefGoogle Scholar
  40. Li, Q., Wang, Y., Liu, H., Sun, Z., & Liu, Z. (2010a). Tongue fissure extraction and classification using hyperspectral imaging technology. Applied Optics, 49(11), 2006–2013.CrossRefGoogle Scholar
  41. Li, Q., Wang, Y., Liu, H., & Sun, Z. (2010). AOTF based hyperspectral tongue imaging system and its applications in computer-aided tongue disease diagnosis (pp. 1424–1427).Google Scholar
  42. Li, Q., Liu, J., Xiao, G., & Xue, Y. (2008). Hyperspectral tongue imaging system used in tongue diagnosis (pp. 2579–2581). IEEE.Google Scholar
  43. Liu, Z., Yan, J. Q., Zhang, D., & Li, Q. L. (2007). Automated tongue segmentation in hyperspectral images for medicine. Applied Optics, 46(34), 8328–8334.Google Scholar
  44. Li, Q., & Liu, Z. (2009). Tongue color analysis and discrimination based on hyperspectral images. Computerized Medical Imaging and Graphics, 33(3), 217–221.MathSciNetCrossRefGoogle Scholar
  45. Zhi, L., Zhang, D., Yan, J. Q., Li, Q. L., & Tang, Q. L. (2007). Classification of hyperspectral medical tongue images for tongue diagnosis. Computerized Medical Imaging and Graphics, 31(8), 672–678.Google Scholar
  46. Yu, X., Jin, Z., Tan, G., et al. (1994). System of Automatic Diagnosis by Tongue Feature in Traditional Chinese Medicine. Chinese Journal of Scientific Instrument, 1, 13. Google Scholar
  47. Wong, W., & Huang, S. (2001). Studies on externalization of application of tongue inspection of TCM. Engineering Science, 3(1), 78–82.Google Scholar
  48. Cai, Y. (2002). A novel imaging system for tongue inspection (pp. 159–164): IEEE; 1999.Google Scholar
  49. Jang, J. H., Kim, J. E., Park, K. M., Park, S. O., Chang, Y. S., & Kim, B. Y. (2002). Development of the digital tongue inspection system with image analysis (pp. 1033–1034). IEEE.Google Scholar
  50. Wei, B. G., Shen, L. S., Wang, Y. Q., Wang, Y. G., Wang, A. M., & Zhao, Z. X. (2002). A digital tongue image analysis instrument for Traditional Chinese Medicine. Chinese Journal of Medical Instrumentation [Zhongguo yi liao qi xie za zhi], 26(3), 164–166.Google Scholar
  51. Wang, Y., Zhou, Y., Yang, J., & Xu, Q. (2004). An image analysis system for tongue diagnosis in traditional Chinese medicine. In Computational and Information Science (pp. 1181–1186): Springer.Google Scholar
  52. Kim, J., Jung, Y., Park, K., & Park, J. (2009). A digital tongue imaging system for tongue coating evaluation in patients with oral malodour. Oral Diseases, 15(8), 565–569.CrossRefGoogle Scholar
  53. He, Y., Liu, C., & Shen, L. (2007). Digital camera based tongue manifestation acquisition platform. World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica, 5.Google Scholar
  54. Chang, Y., & Reid, J. F. (1996). RGB calibration for color image analysis in machine vision. Image Processing, IEEE Transactions on, 5(10), 1414–1422.CrossRefGoogle Scholar
  55. Wandell, B. A. (1987). The synthesis and analysis of color images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (1), 2–13.Google Scholar
  56. Finlayson, G. D. (1996). Color in perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10), 1034–1038.CrossRefGoogle Scholar
  57. Barnard, K., & Funt, B. (2002). Camera characterization for color research. Color Research & Application, 27(3), 152–163.Google Scholar
  58. Yamamoto, K., Kitahara, M., Kimata, H., Yendo, T., Fujii, T., Tanimoto, M., et al. (2007). Multiview video coding using view interpolation and color correction. IEEE Transactions on Circuits and Systems for Video Technology, 17(11), 1436–1449.CrossRefGoogle Scholar
  59. Vrhel, M. J., & Trussell, H. J. (1999). Color device calibration: a mathematical formulation. IEEE Transactions on Image Processing, 8(12), 1796–1806.CrossRefGoogle Scholar
  60. Yamamoto, K., Kitahara, M., Kimata, H., Yendo, T., Fujii, T., Tanimoto, M., et al. (2006). Color calibration for multicamera system without color pattern board. Monash University DECSE Technical Report MECSE-4-2006.Google Scholar
  61. Vrhel, M., Saber, E., & Trussell, H. J. (2005). Color image generation and display technologies.Google Scholar
  62. Luo, M. R., Hong, G., & Rhodes, P. A. (2001). A study of digital camera colorimetric characterization based on polynomial modeling. Color: Research and applications, 26(1), 76–84.Google Scholar
  63. Cheung, V., Westland, S., Connah, D., & Ripamonti, C. (2004). A comparative study of the characterisation of colour cameras by means of neural networks and polynomial transforms. Coloration Technology, 120(1), 19–25.CrossRefGoogle Scholar
  64. Zhang, H., Wang, K., Jin, X., & Zhang, D. (2005). SVR based color calibration for tongue image (pp. 5065–5070). IEEE.Google Scholar
  65. Hu, M. C., Cheng, M. H., & Lan, K. C. (2016). Color correction parameter estimation on the smartphone and its application to automatic tongue diagnosis. Journal of Medical Systems, 40(1), 1–8.CrossRefGoogle Scholar
  66. Zhuo, L., Zhang, P., Qu, P., Peng, Y., Zhang, J., & Li, X. (2015). A K-PLSR-based color correction method for TCM tongue images under different illumination conditions. Neurocomputing, 174(9), 815–821.Google Scholar
  67. Shi, J., et al. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRefGoogle Scholar
  68. Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9), 1277–1294.CrossRefGoogle Scholar
  69. Zhu, S. C., et al. (1996). Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9), 884–900.CrossRefGoogle Scholar
  70. Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181.CrossRefGoogle Scholar
  71. Shi, M. J., Li, G. Z., Li, F. F., & Xu, C. (2014). Computerized tongue image segmentation via the double geo-vector flow. Chinese Medicine, 9(1), 1–10.CrossRefGoogle Scholar
  72. Cui, Z., Zhang, H., Zhang, D., Li, N., & Zuo, W. (2013). Fast marching over the 2D Gabor magnitude domain for tongue body segmentation. Journal on Advances in Signal Processing, 2013(1).Google Scholar
  73. Wu, K., & Zhang, D. (2015). Robust tongue segmentation by fusing region-based and edge-based approaches. Expert Systems with Applications, 42(21), 8027–8038.CrossRefGoogle Scholar
  74. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.CrossRefzbMATHGoogle Scholar
  75. Wu, J., Zhang, Y., & Bai, J. (2006). Tongue area extraction in tongue diagnosis of traditional Chinese medicine (pp. 4955–4957). IEEE.Google Scholar
  76. Zhang, H., Zuo, W., Wang, K., & Zhang, D. (2006). A snake-based approach to automated segmentation of tongue image using polar edge detector. International Journal of Imaging Systems and Technology, 16(4), 103–112.CrossRefGoogle Scholar
  77. Pang, B., Zhang, D., & Wang, K. (2005a). The bi-elliptical deformable contour and its application to automated tongue segmentation in Chinese medicine. IEEE Transactions on Medical Imaging, 24(8), 946–956.Google Scholar
  78. Pang, B., Wang, K., Zhang, F., & Zhang, F. (2002). On automated tongue image segmentation in Chinese medicine (pp. 616–619). IEEE.Google Scholar
  79. Wang, Y., Zhou, Y., Yang, J., & Wang, Y. (2004). JSEG based color separation of tongue image in traditional Chinese medicine. In Progress in pattern recognition, image analysis and applications (pp. 503–508). Springer.Google Scholar
  80. Yu, S., Yang, J., Wang, Y., & Zhang, Y. (2007). Color active contour models based tongue segmentation in traditional Chinese medicine (pp. 1065–1068). IEEE.Google Scholar
  81. Ning, J., Zhang, D., Wu, C., & Yue, F. (2012). Automatic tongue image segmentation based on gradient vector flow and region merging. Neural Computing and Applications, 21(8), 1819–1826.CrossRefGoogle Scholar
  82. Cui, Y., Liao, S., & Wang, H. (2015). ROC-Boosting: A feature selection method for health identification using tongue image. Computational & Mathematical Methods in Medicine, 2015(25), 1–8.Google Scholar
  83. Cui, Y., Liao, S., Wang, H., Liu, H., Wang, W., & Yin, L. (2014). Relationship between Hyperuricemia and Haar-Like Features on Tongue Images. Biomed Research International, 2015, 1–10.Google Scholar
  84. Kim, J., Han, G., Ko, S. J., Nam, D. H., Park, J. W., Ryu, B., et al. (2014). Tongue diagnosis system for quantitative assessment of tongue coating in patients with functional dyspepsia: A clinical trial. Journal of Ethnopharmacology, 155(1), 709–713.CrossRefGoogle Scholar
  85. Li, C. H., & Yuen, P. C. (2002). Tongue image matching using color content. Pattern Recognition, 35(2), 407–419.CrossRefzbMATHGoogle Scholar
  86. Li, C. H., & Yuen, P. C. (2000). Regularized color clustering in medical image database. IEEE Transactions on Medical Imaging, 19(11), 1150–1155.CrossRefGoogle Scholar
  87. Huang, B., & Li, N. (2008). Pixel based tongue color analysis. In Medical biometrics (pp. 282–289). Berlin: Springer.Google Scholar
  88. Huang, B., Zhang, D., & Zhang, H., Li, Y., & Li, N. (2011). Tongue color visualization for local pixel (pp. 297–301). IEEE.Google Scholar
  89. Huang, B., Zhang, D., Li, Y., Zhang, H., & Li, N. (2011). Tongue coating image retrieval (pp. 292–296). IEEE.Google Scholar
  90. Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2), 99–121.CrossRefzbMATHGoogle Scholar
  91. Wang, Y. G., Yang, J., Zhou, Y., & Wang, Y. Z. (2007). Region partition and feature matching based color recognition of tongue image. Pattern Recognition Letters, 28(1), 11–19.Google Scholar
  92. Yuen, P. C., Kuang, Z. Y., Wu, W., & Wu, Y. T. (2000). Tongue texture analysis using Gabor Wavelet opponent colour features for tongue diagnosis in traditional Chinese medicine. Series in Machine Perception and Artificial Intelligence, 40, 179–188.CrossRefGoogle Scholar
  93. Yuen, P. C., Kuang, Z. Y., Wu, W., & Wu, Y. T. (1999). Tongue texture analysis using opponent color features for tongue diagnosis in traditional Chinese medicine. In Proceedings of TAMV (pp. 21–27).Google Scholar
  94. Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, (6), 610–621.Google Scholar
  95. Miao, H. E. (2007). Red-prickled tongue image classification based on Gabor Wavelet and weighed features. Progress in Modern Biomedicine.Google Scholar
  96. Huang, B., & Li, N. (2010). Tongue image identification system on congestion of fungiform papillae (CFP). In Medical biometrics (pp. 73–82). Berlin: Springer.Google Scholar
  97. Heckerman, D. (1997). Bayesian networks for data mining. Data Mining and Knowledge Discovery, 1(1), 79–119.CrossRefGoogle Scholar
  98. Wang, H., & Zong, X. (2006). A new computerized method for tongue classification (pp. 508–511). IEEE.Google Scholar
  99. Ikeda, N., & Uozumi, T. (2005). Tongue diagnosis support system. The Hokkaido Journal of Medical Science [Hokkaido igaku zasshi], 80(3), 269–277.Google Scholar
  100. Watsuji, T., Arita, S., Shinohara, S., & Kitade, T. (1999). Medical application of fuzzy theory to the diagnostic system of tongue inspection in traditional Chinese medicine (pp. 145–148). IEEE.Google Scholar
  101. Hui, S. C., He, Y., & Thach, D. T. C. (2007). Machine learning for tongue diagnosis (pp. 1–5). IEEE.Google Scholar
  102. Kim, K. H., Do, J. H., Ryu, H., & Kim, J. Y. (2008). Tongue diagnosis method for extraction of effective region and classification of tongue coating (pp. 1–7). IEEE.Google Scholar
  103. Park, Y. J., Lee, J. M., Yoo, S. Y., & Park, Y. B. (2016). Reliability and validity of tongue color analysis in the prediction of symptom patterns in terms of East Asian Medicine. Journal of Traditional Chinese Medicine, 36(2), 165–172.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.The Hong Kong Polytechnic UniversityHong KongChina
  2. 2.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
  3. 3.Department of Computer and Information ScienceThe University of MacauTaipaMacao

Personalised recommendations