Skip to main content

A Regularized Finite Volume Numerical Method for the Extended Porous Medium Equation Relevant to Moisture Dynamics with Evaporation in Non-woven Fibrous Sheets

  • Conference paper
  • First Online:
Model Design and Simulation Analysis (AsiaSim 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 603))

Included in the following conference series:

Abstract

The extended porous medium equation (PME) is a degenerate nonlinear diffusion equation that effectively describes moisture dynamics with evaporation in non-woven fibrous sheets. We propose a new finite volume numerical model of the extended PME incorporating regularization of nonlinear degenerate terms, and apply it to test cases for verification of accuracy, stability, and versatility. One of the test cases considered is a new exact steady solution of the extended PME. We also examine a differential equation-based adaptive re-meshing technique for resolving sharp transitions of solution profiles that may be optionally incorporated into the procedure above. The computational results demonstrate satisfactory accuracy of the proposed numerical model, with reasonable reproduction of complicated moisture dynamics involving sharp transitions and divorce of supports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshioka, H., Ito, Y., Kita, I., Fukada, K.: A stable finite volume method for extended porous medium equations and its application to identifying physical properties of a thin non-woven fibrous sheet. In: Proceedings of JSST2015, pp. 398–401 (2015)

    Google Scholar 

  2. Landeryou, M., Eames, I., Cottenden, A.: Infiltration into inclined fibrous sheets. J. Fluid Mech. 529, 173–193 (2005)

    Article  MATH  Google Scholar 

  3. Wilhelmsson, H.: Simultaneous diffusion and reaction processes in plasma dynamics. Phys. Rev. A 38, 1482–1489 (1988)

    Article  MathSciNet  Google Scholar 

  4. Haerns, J., Van Gorder, R.A.: Classical implicit travelling wave solutions for a quasilinear convection-diffusion equation. New Astron. 17, 705–710 (2012)

    Article  Google Scholar 

  5. Broadbridge, P., White, I.: Constant rate rainfall infiltration: a versatile nonlinear model. Analytic solution. Water Resour. Res. 24, 145–154 (1988)

    Article  Google Scholar 

  6. Lockington, D.A., Parlange, J.Y., Lenkopane, M.: Capillary absorption in porous sheets and surfaces subject to evaporation. Transport Porous Med. 68, 29–36 (2007)

    Article  Google Scholar 

  7. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Colorado State University, Hydrology Papers, Fort Collins, Colorado (1964)

    Google Scholar 

  8. Stewart, J.M., Broadbridge, P.: Calculation of humidity during evaporation from soil. Adv. Water Resour. 22, 495–505 (1999)

    Article  Google Scholar 

  9. Pop, I.S., Radu, F., Knabner, P.: Mixed finite elements for the Richards’ equation: linearization procedure. J. Comput. Appl. Math. 168, 365–373 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yoshioka, H.: On dual-finite volume methods for extended porous medium equations, arXiv preprint. arXiv:1507.05281 (2015)

  11. Yoshioka, H., Unami, K.: A cell-vertex finite volume scheme for solute transport equations in open channel networks. Prob. Eng. Mech. 31, 30–38 (2013)

    Article  Google Scholar 

  12. Li, Y., Lee, G., Jeong, D., Kim, J.: An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation. Comput. Math Appl. 60, 1591–1606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, W., Russel, R.D.: Adaptive Moving Mesh Methods, pp. 27–133. Springer, Heidelberg (2011)

    Google Scholar 

  14. Yoshioka, H., Unami, K., Fujihara, M.: A Petrov-Galerkin finite element scheme for 1-D tome-independent Hamilton-Jacobi-Bellman equations. J. JSCE. Ser. A2, 71 (in press)

    Google Scholar 

  15. Yaegashi, Y., Yoshioka, H., Unami, K., Fujihara, M.: An adaptive finite volume scheme for Kolmogorov’s forward equations in 1-D unbounded domains. J. JSCE. Ser. A2, 71 (in press)

    Google Scholar 

  16. Li, H., Farthing, M.W., Dawson, C.N., Miller, C.T.: Local discontinuous Galerkin approximations to Richards’ equation. Adv. Water Resour. 30, 555–575 (2007)

    Article  Google Scholar 

  17. Zhang, Q., Wu, Z.L.: Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method. J. Sci. Comput. 38, 127–148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aronson, D.G., Caffarelli, L.A.: The initial trace of a solution of the porous medium equation. Trans. Am. Math. Soc. 280, 351–366 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fila, M., Vázquez, J.L., Winkler, M., Yanagida, E.: Rate of convergence to Barenblatt profiles for the fast diffusion equation. Arch. Ration. Mech. An. 204, 599–625 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rosenau, P., Kamin, S.: Thermal waves in an absorbing and convecting medium. Physica D 8, 273–283 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nakaki, T., Tomoeda, K.: A finite difference scheme for some nonlinear diffusion equations in an absorbing medium: support splitting phenomena. SIAM J. Numer. Anal. 40, 945–954 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tomoeda, K.: Numerically repeated support splitting and merging phenomena in a porous media equation with strong absorption. J. Math-for-Ind. 3, 61–68 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Tomoeda, K.: Numerical and mathematical approach to support splitting and merging phenomena in the behaviour of non-stationary seepage. Theor. Appl. Mech. Jpn. 63, 15–23 (2015)

    Google Scholar 

  24. Hayek, M.: Water pulse migration through semi-infinite vertical unsaturated porous column with special relative-permeability functions: exact solutions. J. Hydrol. 517, 668–676 (2014)

    Article  Google Scholar 

  25. Vazquez, J.L.: The Porous Medium Equation. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  26. Atkinson, K., Han, W.: Theoretical Numerical Analysis, pp. 449–451. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  27. Bian, S., Liu, J.G.: Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent m > 0. Commun. Math. Phys. 323, 1017–1070 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Naldi, G., Cavalli, F., Perugia, I.: Discontinuous Galerkin approximation of porous Fisher-Kolmogorov equations. Commun. Appl. Indust. Math. 4 (2013). doi:10.1685/journal.caim.446

Download references

Acknowledgements

We thank Dr. Ichiro Kita and Dr. Kotaro Fukada in Faculty of Life and Environmental Science, Shimane University, Japan for providing helpful comments and suggestions on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Yoshioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Yoshioka, H., Triadis, D. (2016). A Regularized Finite Volume Numerical Method for the Extended Porous Medium Equation Relevant to Moisture Dynamics with Evaporation in Non-woven Fibrous Sheets. In: Ohn, S., Chi, S. (eds) Model Design and Simulation Analysis. AsiaSim 2015. Communications in Computer and Information Science, vol 603. Springer, Singapore. https://doi.org/10.1007/978-981-10-2158-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2158-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2157-2

  • Online ISBN: 978-981-10-2158-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics