Skip to main content

Physical Property Significances for Aerospace Structural Materials

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

This chapter summarises the significances of material density, elastic modulus, thermal expansion coefficient and thermal conductivity for the selection and use of some aerospace structural materials. The summary focusses on airframe materials, but thermal barrier coatings (TBCs) are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold SM, Cebon D, Ashby M (2012) Materials selection for aerospace systems. NASA Technical Memorandum NASA/TM-2012-217411, National Aeronautics and Space Administration Center for Aerospace Information, Hanover, MD 21076-1320, USA

    Google Scholar 

  2. Ekvall JC, Rhodes JE, Wald GG (1982) Methodology for evaluating weight savings from basic material properties. In: Design of fatigue and fracture resistant structures, ASTM STP 761. American Society for Testing and Materials, Philadelphia, PA 19104, USA, pp 328–341

    Google Scholar 

  3. Davis JR (ed) (1997) ASM specialty handbook, heat-resistant materials. ASM International, Materials Park, OH 44073-0002, USA, pp 124–145

    Google Scholar 

  4. Buntin WD (1977) Application of fracture mechanics to the F-111 airplane. In: AGARD conference proceedings no. 221 on fracture mechanics design methodology. Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, pp. 3-1–3-12

    Google Scholar 

  5. Mar JW (1991) Structural integrity of aging airplanes: a perspective. In: Atluri SN, Sampath SG, Tong P (eds) Structural integrity of aging airplanes. Springer, Berlin, Germany, pp 241–262

    Google Scholar 

  6. Johnson TF, Natividad R, Rivers HK, Smith RW (2005) Thermal structures technology development for reusable launch vehicle cryogenic propellant tanks. NASA Technical Memorandum NASA/TM-2005-213913. National Aeronautics and Space Administration Center for Aerospace Information, Hanover, MD 21076-1320, USA

    Google Scholar 

  7. Doyle WM (1969) The development of Hiduminium-RR.58 aluminium alloy: the background to the choice of the main structural material for concorde. Aircr Eng Aerosp Technol 41(11):11–14

    Article  Google Scholar 

  8. Hastings D (2013) Structure and systems. Target lock: British Aircraft Corporation TSR.2. www.targetlock.org.uk

  9. Merlin PW (2009) Design and development of the Blackbird: challenges and lessons learned. AIAA paper 2009-1522, 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 5–8 January 2009, Orlando, FL 32801, USA

    Google Scholar 

  10. Department of Defense Handbook, Composite Materials Handbook (2002) Volume 3. Polymer matrix composites materials usage, design, and analysis, MIL-HDBK-17-3F. Document Automation and Production Service (DAPS), Philadelphia, PA 19111-5094, USA

    Google Scholar 

  11. Camanho P, Tong L (eds) (2011) Composite joints and connections: principles, modelling and testing. Woodhead Publishing Limited, Sawston, Cambridge, UK

    Google Scholar 

  12. Baker AA, Dutton S, Kelly D (2004) Chapter 10 in ‘Composite materials for aerospace structures’, 2nd edn. American Institute of Aeronautics and Astronautics, Inc., Reston, VA 20191-4344, USA, pp 369–402

    Google Scholar 

  13. Advisory Group for Aerospace Research and Development (1995) Composite repair of military aircraft structures. In: Conference proceedings AGARD-CP- 550. Neuilly-sur-Seine, France

    Google Scholar 

  14. Vlot A, Verhoeven S, Nijssen PJM (1998) Bonded repairs for aircraft fuselages. Delft University Press, Delft, The Netherlands

    Google Scholar 

  15. Günther G, Maier A (2010) Composite repair for metallic aircraft structures: development and qualification aspects. ICAS paper 2010-8.4.1, ICAS 2010, 27th congress of the international council of the aeronautical sciences, CD-ROM proceedings, 19−24 September 2010. Nice, France

    Google Scholar 

  16. Baker AA (1995) Bonded composite repair of metallic aircraft components—overview of Australian activities. In: ‘Composite repair of military aircraft structures’, AGARD conference proceedings AGARD-CP-550. Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, pp 1-1−1-14

    Google Scholar 

  17. Miller RA (2009) History of thermal barrier coatings for gas turbine engines: emphasizing NASA’s role from 1942 to 1990. NASA Technical Memorandum NASA/TM-2009-215459. National Aeronautics and Space Administration Center for Aerospace Information, Hanover, MD 21076-1320, USA

    Google Scholar 

  18. Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37(10):891–898

    Article  Google Scholar 

  19. Xu H, Guo H (eds) (2011) Thermal barrier coatings. Woodhead Publishing Limited, Sawston, Cambridge, UK

    Google Scholar 

  20. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296(5566):280–284. 12 April 2002

    Google Scholar 

  21. Bacos M-P, Dorvaux J-M, Landais S, Lavigne O, Mévrel R, Poulain M, Rio C, Vidal-Sétif M-H (2011) 10 years-activities at Onera on advanced thermal barrier coatings. Paper AL03-04, Journal Aerospace Lab, Issue 3, November 2011. www.aerospacelab-journal.org

  22. Martin P (2012) Thermal barrier coatings. Society of Vacuum Coaters SVC Bulletin, Summer 2012, pp 28–33, 36–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J H Wanhill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wanhill, R.J.H. (2017). Physical Property Significances for Aerospace Structural Materials. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2143-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2143-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2142-8

  • Online ISBN: 978-981-10-2143-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics