Skip to main content

Structural Health Monitoring

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 4091 Accesses

Abstract

This chapter describes and discusses the evolution of structural health monitoring (SHM) technologies for aircraft. The introduction gives the importance of SHM, its application potential and the principal constituents. This is followed first by a description of strain monitoring systems and HUMS and then of damage monitoring systems. Two major classes of techniques—namely acoustic waves and fibre optics—are described and reviewed. A few applications are also highlighted. Issues and strategies for implementation of SHM are discussed, indicating the path forward.

Prakash D. Mangalgiri—Currently, Private Consultant, Bangalore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang F-K (ed) (2013) Structural health monitoring: a roadmap to intelligent structures. In: Proceedings of the 9th international workshop on structural health monitoring, 10–13 Sept 2013, DEStech Publications Inc., Lancaster, PA, USA

    Google Scholar 

  2. Farrar CR, Worden K (2012) Structural health monitoring: a machine learning perspective. John Wiley & Sons, Chichester, UK

    Google Scholar 

  3. Gopalakrishnan S, Ruzzene M, Hanagud S (2011) Computational techniques for structural health monitoring. Springer-Verlag London Limited, London, UK

    Google Scholar 

  4. Huston D (2010) Structural sensing, health monitoring, and performance evaluation. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  5. Dattaguru B, Mangalgiri PD, Selvarajan A (eds) (2004) Structural health monitoring, ISSS monograph. Institute of Smart Structures and Systems, Bangalore India

    Google Scholar 

  6. Proceedings of the 7th European workshop on structural health monitoring (2014). https://hal.inria.fr/EWSHM2014

  7. Tuck A, Kekoc V (2011) KC-30A structural health monitoring system verification and validation. In: AIAC14, 14th Australian international aerospace congress & 7th DSTO international conference on health & usage monitoring (HUMS 2011)

    Google Scholar 

  8. Fuentes R, Cross E, Halfpenny A, Worden K, Barthorpe RJ (2014) Aircraft parametric structural load monitoring using gaussian process regression. In: EWSHM-7th European workshop on structural health monitoring, 8–11 July 2014, Nantes, France

    Google Scholar 

  9. ASTM E 1049, 85 (2005) Rainflow counting method, 1987

    Google Scholar 

  10. Schijve J (2008) Fatigue of structures and materials. Springer Science & Business Media, Berlin, Germany

    Google Scholar 

  11. White DJ (2013) Five decades of developing aircraft usage technology. In: 15th Australian international aerospace congress (AIAC15) & 8th DSTO international conference on health & usage monitoring (HUMS 2013), Melbourne

    Google Scholar 

  12. http://www.aviationtoday.com/av/military/Typhoon-Europes-Finest_917.html#.VBlTD5SSxqU

  13. http://www.nasa.gov/pdf/625715main_3-5-C_Chan.pdf

  14. Composite Aircraft Structure (2009) Advisory circular FAA AC-20-107B, federal aviation administration. US Department of Transportation, Washington, DC, USA

    Google Scholar 

  15. Composite Materials Handbook (2002) Volume 3. Polymer matrix composites materials usage, design, and analysis, MIL-HDBK-17-3F, US Department of Defense, The Pentagon, Virginia, USA

    Google Scholar 

  16. Briks AS, Green RE Jr, McIntire P (1991) Ultrasonic testing. In: Non-destructive testing handbook, vol 7, American Society for Non-destructive Testing, Columbus, OH, USA

    Google Scholar 

  17. Tittmann BR, Crane RL (2000) Ultrasonic inspection of composites. In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol 5. Elsevier Ltd, Amsterdam, The Netherlands, pp 259–320

    Google Scholar 

  18. http://www.olympus-ims.com/en/webinars/pacomp/

  19. Freemantle RJ, Hankinson N, Brotherhood CJ (2014) Rapid phased array ultrasonic imaging of large area composite aerospace structures. In: World conference on NDT. http://www.ndt.net/article/wcndt2004/pdf/aerospace/551_freemantle.pdf

  20. Satyanarayan L, Krishnamurthy CV, Mohan KV, Balasubramaniam K (2007) Simulation of ultrasonic phased array technique for imaging and sizing of defects using longitudinal waves. Int J Pres Vessels Piping 84:716–729

    Article  Google Scholar 

  21. Rajagopalan J, Balasubramaniam K, Krishnamurthy CV (2006) A phase reconstruction algorithm for Lamb wave based structural health monitoring of anisotropic multilayered composite plates. J Acoust Soc Am 119:872–878. http://dx.doi.org/10.1121/1.2149775

  22. Grosse CU, Ohtsu M (eds) (2008) Acoustic emission testing. Springer-Verlag, Heidelberg,Germany

    Google Scholar 

  23. Kalyanasundaram P, Mukhopadhyay CK, Subba Rao SV (eds) (2007) Practical acoustic emission. Indian Society for Non-destructive Testing, Chennai, Tamil Nadu, India

    Google Scholar 

  24. Wevers M, Surgeon M (2000) Acoustic emission and composites. In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol 5. Elsevier Ltd, Amsterdam, The Netherlands, pp 345–357

    Google Scholar 

  25. Carlos MF E07.04—overview of current and developing ASTM acoustic emission standards. http://www.diapac.ru/Articles/ASTM.pdf

  26. Wild G, Hinckley S (2008) Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art. IEEE Sens J 8(7):1184–1193

    Article  Google Scholar 

  27. Wu Q, Okabe Y (2014) Novel real-time acusto-ultrasonic sensors using two phase-shifted fibre bragg gratings. JIMMS 25(5):640–646. doi:10.1177/1045389X13483028

  28. Wu F, Wu Q, Okabe Y, Kobayashi S, Saito K (2014) Identification of damage types in carbon fibre reinforced plastic laminates by a novel optical fiber acoustic emission sensor. In: 7th European workshop on structural health monitoring (7th EWSHM), Nantes, France

    Google Scholar 

  29. Srinivasan B, Harish AV, Balasubramaniam K (2014) Elastic wave sensing using fibre bragg grating—based sensors and dynamic interrogators. J IISc 94(3):329–339

    Google Scholar 

  30. Staszewski W, Boller C, Tomlinson GR (eds) (2004) Health monitoring of aerospace structures: smart sensor technologies and signal processing. John Wiley & Sons, Wiley Online Library: doi:10.1002/0470092866.index

  31. Subba Rao SV, Subramanyam B (2008) Analysis of acoustic emission signals using wavelet transformation technique. Def Sci J 58(4):559–564

    Google Scholar 

  32. Muravin G, Adams CW, Muravin B, Turkel E, Lezvinsky L (2004) Quantitative acoustic emission NDI for analysing dynamic fracture. World Conf NDT. http://www.ndt.net/article/wcndt2004/pdf/reliability/513_muravin.pdf

  33. Wilcox PD, Lee CK, Scholey JJ, Friswell MI, Wisnom MR, Drinkwater BW (2006) Quantitative structural health monitoring using acoustic emission. In: Matsuzaki Y (ed) Smart structures and integrated systems, proceedings of SPIE, vol 6173, 61731K. doi:10.1117/12.658510

  34. Dunegan HL (1997) Modal analysis of acoustic emission signals. DECI newsletters and reports. http://www.deci.com/oct97.htm

  35. Prosser WH (1998) Waveform analysis of AE in composites. In: Proceedings of the 6th international symposium on acoustic emission composite mater. San Antonio, pp 61–70. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040095919.pdf

  36. Waller JM, Saulsberry RL, Nichols CT, Wentzel DJ (2010) Use of modal acoustic emission to monitor damage progression in carbon fiber/epoxy tows and implications for composite structures. QNDE conference, San Diego, CA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100026035.pdf

  37. Bhat C (2001) Artificial neural network approach for characterization of acoustic emission source from complex noisy data. PhD thesis, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

    Google Scholar 

  38. Bhat C, Bhat MR, Murthy CRL (2008) Characterization of failure modes in CFRP composites—an ANN approach. J Compos Mater 42(3):257–276

    Google Scholar 

  39. Ramasamy P, Sampathkumar S (2014) Prediction of impact damage tolerance of drop impacted WGFRP composite by artificial neural network using acoustic emission parameters. Compos B Eng 60:457–462

    Article  Google Scholar 

  40. Bhat MR, Majeed MA, Murthy CRL (1994) Characterisation of fatigue damage in unidirectional GFRP composites through acoustic emission signal analysis. NDT and E Int 27(1):27–32

    Article  Google Scholar 

  41. Gagar DO (2013) Validation and verification of the acoustic emission technque for structural health monitoring. Ph.D thesis, Cranfield University, UK. https://dspace.lib.cranfield.ac.uk/bitstream/1826/8402/1/Gagar_D_O_Thesis_2013.pdf

  42. Kim HC, Park HK (1984) Laser interferometry system for measuring displacement amplitude of acoustic emission signals. J Phys D Appl Phys 17:673–676. doi:10.1088/0022-3727/17/4/006

    Article  Google Scholar 

  43. Enoki M, Watanabe M, Chivavibul P, Kishi T (2000) Non-contact measurement of acoustic emission in materials by laser interferometry. Sci Technol Adv Mater 1:157–165. doi:10.1016/S1468-6996(00)00017-6

    Article  Google Scholar 

  44. Staszewski WJ, Jenal RB, Klepka A, Szwedo M, Uhl T (2012) A review of laser Doppler vibrometry for structural health monitoring applications. Key Eng Mater 518:1–15

    Google Scholar 

  45. Pohl J, Mook G (2013) Laser-vibrometric analysis of propagation and interaction of lamb waves in CFRP-plates. CEAS Aeronaut J. doi:10.1007/s13272-012-0057-5

    Google Scholar 

  46. Kolappan GG, Mahapatra DR, Gopalakrishnan S (2012) Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer. In: SPIE smart structures and materials—non-destructive evaluation and health monitoring, International Society for Optics and Photonics, Bellingham, WA, USA, pp 83481Q1–83481Q12

    Google Scholar 

  47. Staszewski WJ, Jenal RB, Klepka A, Szwedo M, Uhl T (2012) A review of laser Doppler vibrometry for structural health monitoring applications. Key Engg Mater 518:1–15

    Google Scholar 

  48. Betz DC, Thursby G, Culshaw B, Staszewski WJ (2003) Acousto-ultrasonic sensing using fiber bragg gratings. Smart Mater Struct 12(1):122–128

    Google Scholar 

  49. Mendoza E, Prohaska J, Kempen C, Esterkin Y, Sun S, Krishnaswamy S (2013) Distributed fiber optic acoustic emission sensor (FAESense™) system for condition based maintenance of advanced structures. Optical sensors, SM4C-4. Optical Society of America, 2013 (also in 6th EWSHM). http://ndt.net/article/ewshm2012/papers/th3c4.pdf

  50. Malocha DC, Gallagher M, Fisher B, Humphries J, Gallagher D, Kozlovski N (2013) A passive wireless multi-sensor SAW technology device and system perspectives. Sensors 13(5):5897–5922. doi:10.3390/s130505897

    Article  Google Scholar 

  51. Chin T-L, Zheng P, Oppenheim IJ, Grevec DW (2010) Surface acoustic wave devices for wireless strain measurement. In: Proceedings of SPIE, vol 7647, pp 764743-1

    Google Scholar 

  52. http://www.mistrasgroup.com/products/company/publications/2$Acoustic_Emission/PCI-2_Board.pdf

  53. Balasubramaniam K, Sekhar BV, Vishnu Vardan J, Krishnamurthy CV (2006) Structural health monitoring of composite materials. Key Eng Mater 321:759–764

    Google Scholar 

  54. Su Z, Ye L (2009) Identification of damage using Lamb waves: from fundamentals to applications. Springer Science & Business Media, Berlin, Germany

    Google Scholar 

  55. Giurgiutiu V (2014) Structural health monitoring with piezoelectric wafer active sensors, 2nd edn. Academic Press, Cambridge, MA, USA

    Google Scholar 

  56. Giurgiutiu V, Zagrai A, Bao JJ (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monit 1(1):41–61

    Article  Google Scholar 

  57. Gresil M, Giurgiutiu V (2013) Guided wave propagation in composite laminates using piezoelectric wafer active sensors. Aero J 117(1196):971–994

    Google Scholar 

  58. Rathod VT, Mahapatra DR (2010) Lamb wave based monitoring of plate-stiffener debonding using a circular array of piezoelectric sensors. Int J Smart Sens Intell Syst 3(1):27–44

    Google Scholar 

  59. Chang FK (1999) Built-in structural health monitoring. In: Proceedings of ISSS-SPIE’99, international conference on smart materials, structure and systems, Bangalore, Jul 1999, Allied Publishers, New Delhi, India, pp 44–49

    Google Scholar 

  60. http://www.acellent.com/blog1/products/sensors/

  61. LĂłpez-Higuera JM, Incera AQ, Cobo A (2011) Fiber optic sensors in structural health monitoring. J Lightwave Tech 29(4) (15 Feb 2011)

    Google Scholar 

  62. Guo H, Xiao G, Mrad N, Yao J (2011) Fiber optic sensors for structural health monitoring of air platforms. Sensors 11:3687–3705. doi:10.3390/s110403687

  63. Lee BH, Kim YH, Park KS, Eom JB, Kim MJ, Rho BS, Choi HY (2012) Interferometric fiber optic sensors. Sensors 12:2467–2486. doi:10.3390/s120302467

  64. Majumder M, Gangopadhyay TK, Chakraborty AK, Dasgupta K, Bhattacharya DK (2008) Fibre bragg gratings in structural health monitoring—present status and applications. Sens Actuators A Phys 147(1):150–164

    Google Scholar 

  65. Lance Richards W, Madaras E, Prosser WH, Studor G (2013) NASA applications of structural health monitoring technology. Keynote lecture in 9th international workshop on structural health monitoring, Stanford University. http://structure.stanford.edu/workshop/IWSHM2013/documents/Keynote%20presentations/IWSHM%202013%20Keynote_Richards.pdf

  66. Adachi S (2008) Distributed optical fiber sensors and their applications. In: SICE annual conference, the university electro-communications, Japan, Aug 20–22, 2008, pp 329–333. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4654674

  67. Hotate K, Kashiwagi M (2003) High spatial resolution reflectometry for optical subscriber networks by synthesis of optical coherence function with measurement range enhancement. IEICE Trans Electron E86-C(2):213–217

    Google Scholar 

  68. Hotate K (2006) Fiber sensor technology today. Jpn J Appl Phys 45(8B):6616–6625

    Article  Google Scholar 

  69. Bergman A, Ben-Simon U, Schwartzberg A, Shemesh NY, Glam B, Burvin J, Kressel I, Yehoshua T, Tur M (2014) Evaluation of a UAV composite wing spar repair using an embedded optical fiber rayleigh back-scattering distributed strain sensing. EWSHM—7th European workshop on structural health monitoring, Nantes, France. https://hal.inria.fr/hal-01020351

  70. Sundaram R Personal communication

    Google Scholar 

  71. Renee Pedrazzani J, Castellucci M, Sang AK, Froggatt ME, Klute SM, Gifford DK (2012) Fiber optic distributed strain sensing used to investigate the strain fields in a wind turbine blade and in a test coupon with open holes. SAMPE Tech. http://lunainc.com/wp-content/uploads/2013/04/Pedrazzani-et-al-SAMPE-Tech-2012_FINAL.pdf

  72. Song J, Li W, Lu P, Xu Y, Chen L, Bao X (2014) Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry. IEEE Photonics J 6(3)

    Google Scholar 

  73. Chandler K, Ferguson S, Graver T, Csipkes A, Mendez A (2008) On-line structural health and fire monitoring of a composite personal aircraft using an FBG sensing system. Proc SPIE 6933–6939. doi:10.1117/12.783125

  74. Yu M (2008) Fiber optic sensor technology. IMAC XXVI, Orlando, FL. https://sem.org/PDF/fiber_optic_sensor_technology.pdf

  75. Kressel I, Balter J, Mashiach N, Sovran I, Shapira O, Shemesh NY, Glamm B, Dvorjetski A, Yehoshua T, Tur M (2014) High speed, in-flight structural health monitoring system for medium altitude long endurance unmanned air vehicle. In: EWSHM-7th European workshop on structural health monitoring, pp 274–280. https://hal.inria.fr/hal-01020352/document

  76. Nicolas MJ, Sullivan RW, Richards WL (2013) Fiber bragg grating strains to obtain structural response of a carbon composite wing. In: ASME 2013 conference on smart materials, adaptive structures and intelligent systems, paper no. SMASIS2013-3265, American Society of Mechanical Engineers, pp V002T05A012-V002T05A012

    Google Scholar 

  77. Gupta N, Augustin MJ, Sathya S, Jain S, Vishwamurthy SR, Gaddikeri KM, Sundaram R (2013) Structural health monitoring of composite aircraft structures using fiber bragg grating sensors. J IISc 93:4. http://journal.iisc.ernet.in

  78. Kressel I, Handelman A, Botsev Y, Balter J, Guedj P, Gorbatov N, Tur M, Pillai ACR, Prasad MH, Gupta N, Joseph AM, Sundaram R (2012) Evaluation of flight data from an airworthy structural health monitoring system integrally embedded in an unmanned air vehicle. Paper Tu.4.A.4. In: 6th European workshop on structural health monitoring, Dresden, Germany

    Google Scholar 

  79. Gorinevsky D, Gordon GA, Beard S, Kumar A, Chang F-K (2005) Design of integrated SHM system for commercial aircraft applications. In: 5th international workshop on structural health monitoring, Stanford, CA, USA

    Google Scholar 

  80. Arun Sundaram B, Ravisankar K, Senthil R, Parivallal S (2013) Wireless sensors for structural health monitoring and damage detection techniques. Curr Sci 104(11):1496–1505

    Google Scholar 

  81. Boyle D, Magno M, O’Flynn B, Brunelli D, Popovici E, Benini L (2011) Towards persistent structural health monitoring through sustainable wireless sensor networks. In: Seventh international conference on intelligent sensors, sensor networks and information processing (ISSNIP). IEEE Pub, Adelaide, pp 323–328. doi:10.1109/ISSNIP.2011.6146587

  82. Mangalgiri PD (2013) Design allowable considerations for use of advanced composites in aircraft structures. J IISc 93(4):571–592

    Google Scholar 

  83. Guidelines for implementation of structural health monitoring on fixed wing aircraft, SAE ARP6461 (2013). Society for Automotive Engineers, Warrendale, PA, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kota Harinarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Mangalgiri, P.D., Harinarayana, K. (2017). Structural Health Monitoring. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2143-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2143-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2142-8

  • Online ISBN: 978-981-10-2143-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics