Skip to main content

Shape Memory Alloys (SMAs) for Aerospace Applications

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Shape memory alloys (SMAs) have the ability to ‘memorise’ or recover their previous form when subjected to thermal, thermomechanical or magnetic variations. This ability has resulted in a new class of materials for engineering applications in the aerospace, medical, automotive and home appliance sectors. This chapter surveys SMAs and the developments for aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Electrochem Soc 54:3819–3833

    Google Scholar 

  2. Greninger AB, Mooradian VG (1938) Strain transformation in metastable beta copper–zinc and beta copper–tin alloys. Trans AIME 128:337–368

    Google Scholar 

  3. Kurdjumov GV, Khandros LG (1949) First reports of the thermoelastic behaviour of the martensitic phase of Au–Cd alloys. Dokl Akad Nauk SSSR 66:211–213

    Google Scholar 

  4. Chang LC, Read TA (1951) Plastic deformation and diffusionless phase changes in metals: the gold-cadmium beta phase. Trans AIME 191:47–52

    Google Scholar 

  5. Kauffman G, Mayo I (1996) The story of Nitinol: the serendipitous discovery of the memory metal and its applications. Chem Educ 2(2):1–21: Electronic Journal (S 1430–4171 (97) 02111-0)

    Google Scholar 

  6. Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Chapter 1 in ‘Shape Memory Alloys, Modeling and Engineering Applications’. Springer Science+Business Media, LLC, New York, NY 10013, USA, pp 1–52

    Google Scholar 

  7. Taha OMA, Bahrom MB, Taha OY, Aris MS (2015) Experimental study on two way shape memory effect training procedure for NiTiNOL shape memory alloys. ARPN J Eng Appl Sci 10(17):7847–7851

    Google Scholar 

  8. Hodgson DE, Wu MH, Biermann RJ (1990) Shape memory alloys. In: ASM Handbook: Volume 2: Properties and selection: nonferrous alloys and special-purpose materials. ASM International, Materials Park, OH 44073-0002, USA, pp 897–902

    Google Scholar 

  9. Novotny M, Kilpi J (2001) Shape memory alloys. Referenced in Gök MO, Bilir MZ, Gürcüm BH (2015) Shape-memory applications in textile design. Procedia—Social and behavioural Sciences, vol 195, pp 2160–2169

    Google Scholar 

  10. Melton KN (1990) Ni-Ti based shape memory alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 21–35

    Google Scholar 

  11. Duerig TW, Pelton AR (1994) Ti–Ni shape memory alloys. In: Boyer R, Welsch G, Collings EW (eds) Materials Properties Handbook: Titanium alloys. ASM International, Materials Park, OH 44073-0002, USA, pp 1035–1048

    Google Scholar 

  12. Nam TH, Saburi T, Nakata Y, Shimizu K (1990) Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Mater Trans Jpn Inst Met 31(12):1050–1056

    Google Scholar 

  13. He W, Min G, Yin Y, Tolochko O (2009) Martensitic transformation and mechanical properties of Ti-rich Ti-Ni-Cu melt-spun ribbon. Trans Nonferrous Met Soc China 19:1464–1469

    Article  Google Scholar 

  14. Moberly WJ, Melton KN (1990) Ni-Ti-Cu shape memory alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 46–57

    Google Scholar 

  15. Simpson JA, Melton K, Duerig T (1988) Nickel/titanium/niobium shape memory alloy and article. United States Patent 4,770,725, 13 Sept 1988

    Google Scholar 

  16. Lindquist PG, Wayman CM (1990) Shape memory and transformation behavior of martensitic Ti-Pd-Ni and Ti-Pt-Ni alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 58–68

    Google Scholar 

  17. Bigelow G, Noebe R, Padula II S, Garg A, Olson D (2006) Development and characterization of improved NiTiPd high-temperature shape-memory alloys by solid solution strengthening and thermomechanical processing. In: Berg B, Mitchell MR, Proft J (eds) SMST-2006, Shape memory and superelastic technologies. ASM International, Materials Park, OH 44073-0002, USA, pp 113–132

    Google Scholar 

  18. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  19. Boller C, Brand W, Brinson LC, Huang M (1996) Shape memory alloys and their applications. In: Smart structures and materials: implications for military aircraft of new generation. AGARD Lecture Series 205, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, pp 2-1–2-13

    Google Scholar 

  20. Hartl DJ, Mabe JH, Benafan O, Coda A, Conduit B, Padan R, Van Doren B (2015) Standardization of shape memory alloy test methods toward certification of aerospace applications. Smart Mater Struct 24:082001 (6 p)

    Google Scholar 

  21. Hartl D, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G, J Aerosp Eng 221(4):535–552

    Google Scholar 

  22. Lagoudas DC, Miller DA, Rong L, Kumar PK (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct 18:085021 (12 p)

    Google Scholar 

  23. Barbarino S, Bilgen O, Ajaj RM, Friswell MI, Inman DJ (2011) A review of morphing aircraft. J Intell Mater Syst Struct 22:823–877

    Article  Google Scholar 

  24. Barbarino S, Saavedra Flores EI, Ajaj RM, Dayyani I, Friswell MI (2014) A review on shape memory alloys with applications to morphing aircraft. Smart Mater Struct 23:063001 (19 p)

    Google Scholar 

  25. Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23(1):11–19

    Article  Google Scholar 

  26. Smith SH, Dowen D, Fossness E, Peffer A (1999) Development of shape memory alloy (SMA) actuated mechanisms for spacecraft release mechanisms. Paper SSC99-XI-7. In: Proceedings of the 13th AIAA/USU Conference on Small Satellites, Cheaper by the Dozen: The Move to Small Satellite Constellations. http://digitalcommons.usu.edu/smallsat/1999/all1999/6/

  27. Lazansky C, Christiansen S (2006) Problems and product improvements in a qualified, flight heritage product. In: 38th Aerospace Mechanisms Symposium. Compiled by Boesiger EA, NASA Conference Proceedings NASA/CP-2006-214290, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320, USA, pp 75–88

    Google Scholar 

  28. Willey CE, Huettl B, Hill SW (2001) Design and development of a miniature mechanisms tool-kit for micro spacecraft. In: 35th Aerospace Mechanisms Symposium. Compiled by Boesiger EA, NASA Conference Proceedings NASA/CP-2001-209626, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320, USA, pp 287–300

    Google Scholar 

  29. Huang W, Pellegrino S, Bashford DP (1996) Shape memory alloy actuators for deployable structures. In: Burke WR (ed) Proceedings of an International Conference on Spacecraft Structures, Materials and Mechanical Testing. ESA SP-386, European Space Agency, Paris, France, pp 53–61

    Google Scholar 

  30. Jenkins PP, Landis GA (1995) A rotating arm using shape-memory alloy. In: Schneider WC (ed) 29th Aerospace Mechanisms Symposium. NASA Conference Publication 3293, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320 (formerly Linthicum Heights, MD 21090-2934), USA, pp 167–171

    Google Scholar 

  31. Lagoudas DC, Kalmár-Nagy T, Lagoudas MZ (2010) Shape memory alloys for vibration isolation damping of large-scale space structures. Annual Report AFRL-OSR-VA-TR-2912-0440, Air Force Office of Scientific Research, Arlington, VA 22203, USA

    Google Scholar 

Bibliography

  1. Chen HR (ed) (2010) Shape memory alloys: manufacture, properties and applications. Nova Science Publishers, Inc., Hauppauge, NY 11788-3619, USA

    Google Scholar 

  2. Lagoudas DC (ed) (2008) Shape memory alloys, modeling and engineering applications. Springer Science+Business Media, LLC, New York, NY 10013, USA

    Google Scholar 

  3. Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge, UK

    Google Scholar 

  4. Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) (1990) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ashok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wanhill, R.J.H., Ashok, B. (2017). Shape Memory Alloys (SMAs) for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics