Abstract
Shape memory alloys (SMAs) have the ability to ‘memorise’ or recover their previous form when subjected to thermal, thermomechanical or magnetic variations. This ability has resulted in a new class of materials for engineering applications in the aerospace, medical, automotive and home appliance sectors. This chapter surveys SMAs and the developments for aerospace applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Electrochem Soc 54:3819–3833
Greninger AB, Mooradian VG (1938) Strain transformation in metastable beta copper–zinc and beta copper–tin alloys. Trans AIME 128:337–368
Kurdjumov GV, Khandros LG (1949) First reports of the thermoelastic behaviour of the martensitic phase of Au–Cd alloys. Dokl Akad Nauk SSSR 66:211–213
Chang LC, Read TA (1951) Plastic deformation and diffusionless phase changes in metals: the gold-cadmium beta phase. Trans AIME 191:47–52
Kauffman G, Mayo I (1996) The story of Nitinol: the serendipitous discovery of the memory metal and its applications. Chem Educ 2(2):1–21: Electronic Journal (S 1430–4171 (97) 02111-0)
Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Chapter 1 in ‘Shape Memory Alloys, Modeling and Engineering Applications’. Springer Science+Business Media, LLC, New York, NY 10013, USA, pp 1–52
Taha OMA, Bahrom MB, Taha OY, Aris MS (2015) Experimental study on two way shape memory effect training procedure for NiTiNOL shape memory alloys. ARPN J Eng Appl Sci 10(17):7847–7851
Hodgson DE, Wu MH, Biermann RJ (1990) Shape memory alloys. In: ASM Handbook: Volume 2: Properties and selection: nonferrous alloys and special-purpose materials. ASM International, Materials Park, OH 44073-0002, USA, pp 897–902
Novotny M, Kilpi J (2001) Shape memory alloys. Referenced in Gök MO, Bilir MZ, Gürcüm BH (2015) Shape-memory applications in textile design. Procedia—Social and behavioural Sciences, vol 195, pp 2160–2169
Melton KN (1990) Ni-Ti based shape memory alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 21–35
Duerig TW, Pelton AR (1994) Ti–Ni shape memory alloys. In: Boyer R, Welsch G, Collings EW (eds) Materials Properties Handbook: Titanium alloys. ASM International, Materials Park, OH 44073-0002, USA, pp 1035–1048
Nam TH, Saburi T, Nakata Y, Shimizu K (1990) Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Mater Trans Jpn Inst Met 31(12):1050–1056
He W, Min G, Yin Y, Tolochko O (2009) Martensitic transformation and mechanical properties of Ti-rich Ti-Ni-Cu melt-spun ribbon. Trans Nonferrous Met Soc China 19:1464–1469
Moberly WJ, Melton KN (1990) Ni-Ti-Cu shape memory alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 46–57
Simpson JA, Melton K, Duerig T (1988) Nickel/titanium/niobium shape memory alloy and article. United States Patent 4,770,725, 13 Sept 1988
Lindquist PG, Wayman CM (1990) Shape memory and transformation behavior of martensitic Ti-Pd-Ni and Ti-Pt-Ni alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 58–68
Bigelow G, Noebe R, Padula II S, Garg A, Olson D (2006) Development and characterization of improved NiTiPd high-temperature shape-memory alloys by solid solution strengthening and thermomechanical processing. In: Berg B, Mitchell MR, Proft J (eds) SMST-2006, Shape memory and superelastic technologies. ASM International, Materials Park, OH 44073-0002, USA, pp 113–132
Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113
Boller C, Brand W, Brinson LC, Huang M (1996) Shape memory alloys and their applications. In: Smart structures and materials: implications for military aircraft of new generation. AGARD Lecture Series 205, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, pp 2-1–2-13
Hartl DJ, Mabe JH, Benafan O, Coda A, Conduit B, Padan R, Van Doren B (2015) Standardization of shape memory alloy test methods toward certification of aerospace applications. Smart Mater Struct 24:082001 (6 p)
Hartl D, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G, J Aerosp Eng 221(4):535–552
Lagoudas DC, Miller DA, Rong L, Kumar PK (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct 18:085021 (12 p)
Barbarino S, Bilgen O, Ajaj RM, Friswell MI, Inman DJ (2011) A review of morphing aircraft. J Intell Mater Syst Struct 22:823–877
Barbarino S, Saavedra Flores EI, Ajaj RM, Dayyani I, Friswell MI (2014) A review on shape memory alloys with applications to morphing aircraft. Smart Mater Struct 23:063001 (19 p)
Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23(1):11–19
Smith SH, Dowen D, Fossness E, Peffer A (1999) Development of shape memory alloy (SMA) actuated mechanisms for spacecraft release mechanisms. Paper SSC99-XI-7. In: Proceedings of the 13th AIAA/USU Conference on Small Satellites, Cheaper by the Dozen: The Move to Small Satellite Constellations. http://digitalcommons.usu.edu/smallsat/1999/all1999/6/
Lazansky C, Christiansen S (2006) Problems and product improvements in a qualified, flight heritage product. In: 38th Aerospace Mechanisms Symposium. Compiled by Boesiger EA, NASA Conference Proceedings NASA/CP-2006-214290, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320, USA, pp 75–88
Willey CE, Huettl B, Hill SW (2001) Design and development of a miniature mechanisms tool-kit for micro spacecraft. In: 35th Aerospace Mechanisms Symposium. Compiled by Boesiger EA, NASA Conference Proceedings NASA/CP-2001-209626, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320, USA, pp 287–300
Huang W, Pellegrino S, Bashford DP (1996) Shape memory alloy actuators for deployable structures. In: Burke WR (ed) Proceedings of an International Conference on Spacecraft Structures, Materials and Mechanical Testing. ESA SP-386, European Space Agency, Paris, France, pp 53–61
Jenkins PP, Landis GA (1995) A rotating arm using shape-memory alloy. In: Schneider WC (ed) 29th Aerospace Mechanisms Symposium. NASA Conference Publication 3293, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320 (formerly Linthicum Heights, MD 21090-2934), USA, pp 167–171
Lagoudas DC, Kalmár-Nagy T, Lagoudas MZ (2010) Shape memory alloys for vibration isolation damping of large-scale space structures. Annual Report AFRL-OSR-VA-TR-2912-0440, Air Force Office of Scientific Research, Arlington, VA 22203, USA
Bibliography
Chen HR (ed) (2010) Shape memory alloys: manufacture, properties and applications. Nova Science Publishers, Inc., Hauppauge, NY 11788-3619, USA
Lagoudas DC (ed) (2008) Shape memory alloys, modeling and engineering applications. Springer Science+Business Media, LLC, New York, NY 10013, USA
Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge, UK
Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) (1990) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media Singapore
About this chapter
Cite this chapter
Wanhill, R.J.H., Ashok, B. (2017). Shape Memory Alloys (SMAs) for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_21
Download citation
DOI: https://doi.org/10.1007/978-981-10-2134-3_21
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-2133-6
Online ISBN: 978-981-10-2134-3
eBook Packages: EngineeringEngineering (R0)