Skip to main content

Albumin Nanoparticles

  • Chapter
  • First Online:
Albumin in Medicine
  • 1685 Accesses

Abstract

Albumin is an attractive macromolecular carrier and is widely used in preparing nanoparticles due to its biodegradability, nontoxicity, and nonimmmunogenicity. Albumin nanoparticles themselves are biodegradable and can easily be prepared in defined sizes. Several protocols for preparing albumin nanoparticles that have been developed include: emulsification, desolvation, nab technology, thermal gelation, nano spray drying, and self-assembly techniques.

After preparing albumin nanoparticles, physicochemical properties such as particle size, particle size distribution, zeta potential, and morphology need to be carefully checked if they are intended to be used in a specific delivery system.

Albumin itself has several reactive amino acid groups on its surface, and, as a result, albumin nanoparticles also participate in the electrostatic adsorption of positively or negatively charged molecules. In addition, modifying the reactive amino acid groups on the surface can confer a variety of functionalities to albumin nanoparticles such as prolonged circulation half-life, enhanced nanosystem stability, sustained drug release, or targeting release.

Therefore, albumin nanoparticles represent one of the most important drug carriers for the delivery of therapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnedo A, Espuelas S, Irache JM (2002) Albumin nanoparticles as carriers for a phosphodiester oligonucleotide. Int J Pharm 244:59–72

    Article  CAS  PubMed  Google Scholar 

  • Cortes J, Saura C (2010) Nanoparticle albumin-bound (nabâ„¢)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur J Cancer Suppl 8:1–10

    Article  CAS  Google Scholar 

  • Desai N (2007) Nanoparticle albumin bound (nab) technology: targeting tumors through the endothelial gp60 receptor and SPARC. Nanomedicine 3:337–346

    Google Scholar 

  • Gong J, Huo M, Zhou J, Zhang Y, Peng X, Yu D, Zhang H, Li J (2009) Synthesis, characterization, drug-loading capacity and safety of novel octyl modified serum albumin micelles. Int J Pharm 376:161–168

    Article  CAS  PubMed  Google Scholar 

  • Irache JM, Merodio M, Arnedo A, Camapanero MA, Mirshahi M, Espuelas S (2005) Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem 5:293–305

    Article  CAS  PubMed  Google Scholar 

  • Jahanshahi M, Babaei Z (2008) Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol 7:4926–4934

    CAS  Google Scholar 

  • Jahanshahi M, Zhang Z, Lyddiatt A (2005) Subtractive chromatography for purification and recovery of nano-bioproducts. J IET Nanobiotechnol 152:121–126

    Article  CAS  Google Scholar 

  • Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S, Kim H, Jon S, Chen X, Lee KC (2011) Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm 403:285–291

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AL, Maruyama K, Torichilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–238

    Article  CAS  PubMed  Google Scholar 

  • Kouchakzadeh H, Shojaosadati SA, Maghsoudi A, Farahani EV (2010) Optimization of PEGylation conditions for BSA nanoparticles using response surface methodology. AAPS PharmSciTech 11:1206–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183

    Article  CAS  PubMed  Google Scholar 

  • Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D (2003) Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 257:169–180

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Heng D, Ng WK, Chan HK, Tan RB (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403:192–200

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Coombes AG, Garnett MC, Davies MC, Schacht E, Davis SS, Illum L (1994) Preparation of sterically stabilized human serum albumin nanospheres using a novel Dextranox-MPEG crosslinking agent. Pharm Res 11:1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Yuda T, Okamoto A, Ishikura C, Kojima S, Iwatsuru M (1991) Effect of molecular weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes. Chem Pharm Bull 39:1620–1622

    Article  CAS  PubMed  Google Scholar 

  • Merodio M, Arnedo A, Renedo MJ, Irache JM (2001) Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 12:251–259

    Article  CAS  PubMed  Google Scholar 

  • Muller RH, Wallis KH (1993) Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. Int J Pharm 89:25–31

    Article  Google Scholar 

  • Nguyen HH, Ko S (2010) Preparation of size-controlled BSA nanoparticles by intermittent addition of desolvating agent. IFMBE Proc 27:231–234

    Article  Google Scholar 

  • Papadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemon C (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficiency. Proc Natl Acad Sci U S A 88:11460–11464

    Article  Google Scholar 

  • Patil GV (2003) Biopolymer albumin for diagnosis and in drug delivery. Drug Dev Res 58:219–247

    Article  CAS  Google Scholar 

  • Peters T Jr (1996) All about albumin: biochemistry, genetics and medical application. Academic, San Diego

    Google Scholar 

  • Queiroz RG, Varca GHC, Kadlubowski S, Ulanski P, Lugão AB (2016) Radiation-synthesized protein-based drug carriers: size-controlled BSA nanoparticles. Int J Biol Macromol 85:82–91

    Article  CAS  PubMed  Google Scholar 

  • Rollett A, Reiter T, Nogueira P, Cardinale M, Loureiro A, Gomes A, Cavaco-Paulo A, Moreira A, Carmo AM, Guebitz GM (2012) Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. Int J Pharm 427:460–466

    Article  CAS  PubMed  Google Scholar 

  • Scheffel U, Rhodes BA, Natarajan TK, Wagner HN Jr (1972) Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 13:498–503

    CAS  PubMed  Google Scholar 

  • Shen Z, Li Y, Kohama K, Oneill B, Bi J (2011) Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol Res 63:51–58

    Article  CAS  PubMed  Google Scholar 

  • Singh HD, Wang G, UludaÄŸ H, Unsworth LD (2010) Poly-l-lysine-coated albumin nanoparticles: stability, mechanism for increasing. In vitro enzymatic resilience and siRNA release characteristics. Acta Biomater 6:4277–4284

    Article  CAS  PubMed  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 7:1–20

    Article  Google Scholar 

  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Kundu J, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater 11:1–13

    Article  Google Scholar 

  • Ulbrich K, Michaelis M, Rothweiler F, Knobloch T, Sithisarn P, Cinat J, Kreuter J (2011) Interaction of folate-conjugated human serum albumin (HSA) nano-particles with tumor cells. Int J Pharm 406:128–134

    Article  CAS  PubMed  Google Scholar 

  • Varca GHC, Queiroz RG, Lugão AB (2016) Irradiation as an alternative route for protein crosslinking: cosolvent free BSA nanoparticles. Radia Phy Chem 124:111–115

    Article  CAS  Google Scholar 

  • Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458

    Article  CAS  PubMed  Google Scholar 

  • Wartlick H, Michaelis K, Balthasar S, Strebhardt K, Kreuter J, Langer K (2004) Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumor cells. J Drug Target 12:461–471

    Article  CAS  PubMed  Google Scholar 

  • Weber C, Coester C, Kreuter J, Langer K (2000) Desolvation process and surface characteristics of protein nanoparticles. Int J Pharm 194:91–102

    Article  CAS  PubMed  Google Scholar 

  • Yogasundaram H, Bahniuk MS, Singh HD, Aliabadi HM, UludaÄŸ H, Unsworth LD (2012) BSA nanoparticles for siRNA delivery: coating effects on nanoparticle properties, plasma protein adsorption, and in vitro siRNA delivery. Int J Biomater 2012:584060

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu S, Yao P, Jiang M, Zhang G (2006) Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers 83:148–158

    Article  CAS  PubMed  Google Scholar 

  • Zauner W, Farrow NA, Haines AM (2001) In vitro uptake of polystyrene microspheres: effect of particles size, cell line and cell density. J Control Release 71:39–51

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wang G, Lin X, Chatzinikolaidou M, Jennissen H, Laub M (2008) Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery. Biotechnol Prog 24:945–956

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Kucharski C, Doschak MR, Sebald W, Uludag H (2010) Polyethylenimine–PEG coated albumin nanoparticles for BMP-2 delivery. Biomaterial 31:952–963

    Article  Google Scholar 

  • Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, Zhang Z (2010) Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine 5:669–677

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Iwao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Iwao, Y. (2016). Albumin Nanoparticles. In: Otagiri, M., Chuang, V. (eds) Albumin in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-2116-9_5

Download citation

Publish with us

Policies and ethics