Advertisement

Sclera Vessel Pattern Synthesis Based on a Non-parametric Texture Synthesis Technique

  • Abhijit DasEmail author
  • Prabir Mondal
  • Umapada Pal
  • Michael Blumenstein
  • Miguel A. Ferrer
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 460)

Abstract

This work proposes a sclera vessel texture pattern synthesis technique. Sclera texture was synthesized by a non-parametric based texture regeneration technique. A small number of classes from the UBIRIS version: 1 dataset was employed as primitive images. An appreciable result was achieved which solicits the successful synthesis of sclera texture patterns. It is difficult to get a huge collection real sclera data and hence such synthetic data will be useful to the researchers.

Keywords

Sclera Synthesis Pattern Texture Biometrics 

References

  1. 1.
    Derakhshani, R., A. Ross, A., Crihalmeanu, S.: A New Biometric Modality Based on Conjunctival Vasculature. Artificial Neural Networks in Enineering (2006) 1–6.Google Scholar
  2. 2.
    Das, A., Pal, U., Ballester, M., F., A., Blumenstein, M.: A New Method for Sclera Vessel Recognition using OLBP. Chinese Conference on Biometric Recognition, LNCS 8232 (2013) 370–377.Google Scholar
  3. 3.
    Das, A., Pal, U., Ballester, M., F., Blumenstein, M.: Sclera Recognition Using D-SIFT. 13th International Conference on Intelligent Systems Design and Applications (2013) 74–79.Google Scholar
  4. 4.
    Das, A., Pal, U., Blumenstein M., Ballester, M., F.: Sclera Recognition—A Survey. Advancement in Computer Vision and Pattern Recognition (2013) 917 –921.Google Scholar
  5. 5.
    Das, A., Pal, U., Ballester, M., F., Blumenstein, M.: Fuzzy Logic Based Sclera Recognition. FUZZ-IEEE (2014) 561–568.Google Scholar
  6. 6.
    Das, A., Pal, U., Ballester M., F., Blumenstein, M.: Multi-angle Based Lively Sclera Biometrics at a Distance. IEEE Symposium Series on Computational Intelligence (2014) 22–29.Google Scholar
  7. 7.
    Das, A., Pal, U., Ballester, M., A., F., Blumenstein, M.: A new efficient and adaptive sclera recognition system. Computational Intellig. in Biometrics and Identity Management. IEEE Symposium (2014) 1–8.Google Scholar
  8. 8.
    Das, A., Pal, U., Blumenstein, M., Ballester, M., A., F.: Sclera Segmentation Benchmarking Competition (2015). http://www.ict.griffith.edu.au/conferences/btas2015.
  9. 9.
    Crihalmeanu, S., Ross., A.: Multispectral scleral patterns for ocular biometric recognition. Pattern Recognition Letters, Vol. 33 (2012) 1860–1869.CrossRefGoogle Scholar
  10. 10.
    Zhou, Z., Du, Y., Thomas, N., L., Delp, E., J.: Quality Fusion Based Multimodal Eye Recognition. IEEE International Conference on Systems, Man, and Cybernetics (2012) 1297–1302.Google Scholar
  11. 11.
    Das, A., Kunwer, R.., Pal, U., M. A. Ballester, M., A., F., Blumenstein, M.: An online learning-based adaptive biometric system. Adaptive Biometric Systems: Recent Advances and Challenges (2015) 73–95.Google Scholar
  12. 12.
    Galbally, J., Ross, A., Gomez-Barrero, M., Fierrez, J., Ortega-Garcia, J.,: Iris image reconstruction from binary templates: An efficient probabilistic approach based on genetic algorithms, Computer Vision and Image Understanding, Vol. 117, n. 10, (2013) 1512–1525.CrossRefGoogle Scholar
  13. 13.
    Efros, A., Leung, T.,: Texture Synthesis by Non-Parametric Sampling. In Proceedings of International Conference on Computer Vision, (1999), 1033–1038.Google Scholar
  14. 14.
    Proença, H., Alexandre, L., A.: UBIRIS: A noisy iris image database, Proceed. of ICIAP 2005—Intern. Confer. on Image Analysis and Processing, 1: (2005) 970–977.Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Abhijit Das
    • 1
    Email author
  • Prabir Mondal
    • 2
  • Umapada Pal
    • 2
  • Michael Blumenstein
    • 1
  • Miguel A. Ferrer
    • 3
  1. 1.Institute for Integrated and Intelligent Systems, Griffith UniversityQueenslandAustralia
  2. 2.Computer Vision and Pattern Recognition UnitIndian Statistical InstituteKolkataIndia
  3. 3.IDeTIC, University of Las Palmas de Gran CanariaLas PalmasSpain

Personalised recommendations