Advertisement

Three-Dimensional (3D) Watermarking

  • Mohammad Ali Nematollahi
  • Chalee Vorakulpipat
  • Hamurabi Gamboa Rosales
Chapter
Part of the Springer Topics in Signal Processing book series (STSP, volume 11)

Abstract

Three-dimensional (3D) computer graphic is applied widely in digital archives, video games, entertainment, animation, MPEG-4, and Web3D. 3D watermarking focuses on embedding hidden data in 3D materials. As discussed in Chap.  5, 3D watermarking is very similar to a compression standard that implies watermarks on a sequence of still images [1].

Keywords

Discrete Cosine Transform Human Visual System Hausdorff Distance Triangular Mesh Geodesic Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Doerr, G., and J.-L. Dugelay. 2003. A guide tour of video watermarking. Signal Processing: Image Communication 18(4): 263–282.Google Scholar
  2. 2.
    Ohbuchi, R., H. Masuda, and M. Aono. 1997. Watermaking three-dimensional polygonal models. In Proceedings of the fifth ACM international conference on Multimedia. ACM.Google Scholar
  3. 3.
    Stollnitz, E.J., T.D. DeRose, and D.H. Salesin. 1996. Wavelets for computer graphics: Theory and applications. Morgan Kaufmann.Google Scholar
  4. 4.
    Eck, M., et al. 1995. Multiresolution analysis of arbitrary meshes. In Proceedings of the 22nd annual conference on computer graphics and interactive techniques. ACM.Google Scholar
  5. 5.
    Garland, M., and P.S. Heckbert. 1997. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.Google Scholar
  6. 6.
    Cox, I.J., et al. 1997. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing 6(12): 1673–1687.CrossRefGoogle Scholar
  7. 7.
    Watt, A.H., and A. Watt. 2000. 3D computer graphics, vol. 2. Addison-Wesley Reading.Google Scholar
  8. 8.
    Dugelay, J.-L., A. Baskurt, and M. Daoudi. 2008. 3D object processing: compression, indexing and watermarking. Hoboken: John Wiley & Sons.Google Scholar
  9. 9.
    Li, H., P. Roivainen, and R. Forchheimer. 1993. 3-D motion estimation in model-based facial image coding. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(6): 545–555.CrossRefGoogle Scholar
  10. 10.
    Lindstrom, P., et al. 1996. Real-time, continuous level of detail rendering of height fields. In Proceedings of the 23rd annual conference on computer graphics and interactive techniques. ACM.Google Scholar
  11. 11.
    Heckbert, P., and M. Garland. 1994. Multiresolution modeling for fast rendering. In Graphics interface. Canadian Information Processing Society.Google Scholar
  12. 12.
    Zeki, A.M., and A. Abubakar. 2013. 3D digital watermarking: issues and challenges. In Proceeding of the international conference on artificial intelligence and computer science (AICS2013). Artificial intelligence and it’s application in life. Bayview, Langkawi, MALAYSIA.Google Scholar
  13. 13.
    Mackinlay, J.D., S.K. Card, and G.G. Robertson. 1990. Rapid controlled movement through a virtual 3D workspace. In ACM SIGGRAPH computer graphics. ACM.Google Scholar
  14. 14.
    Kai Wang, G.L. Florence Denis, Atilla Baskurt.Google Scholar
  15. 15.
    Luo, M. 2006. Robust and blind 3D watermarking.Google Scholar
  16. 16.
    Taubin, G., T. Zhang, and G. Golub. 1996. Optimal surface smoothing as filter design. Berlin: Springer.Google Scholar
  17. 17.
    Yang, Y. 2013. Information analysis for steganography and steganalysis in 3D polygonal meshes. Durham University.Google Scholar
  18. 18.
    Ohbuchi, R., H. Masuda, and M. Aono. 1997. Embedding data in 3D models. In Interactive distributed multimedia systems and telecommunication services. Berlin: Springer.Google Scholar
  19. 19.
    Cayre, F., and B. Macq. 2003. Data hiding on 3-D triangle meshes. IEEE Transactions on Signal Processing 51(4): 939–949.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bas, P. 2000. Méthodes de tatouage d’images fondées sur le contenu.Google Scholar
  21. 21.
    Wang, C.M., and Y.M. Cheng. 2005. An efficient information hiding algorithm for polygon models. In Computer graphics forum. Wiley Online Library.Google Scholar
  22. 22.
    Cheng, Y.-M., and C.-M. Wang. 2007. An adaptive steganographic algorithm for 3D polygonal meshes. The Visual Computer 23(9–11): 721–732.CrossRefGoogle Scholar
  23. 23.
    Chao, M.-W., et al. 2009. A high capacity 3D steganography algorithm. IEEE Transactions on Visualization and Computer Graphics 15(2): 274–284.CrossRefGoogle Scholar
  24. 24.
    Mao, X., M. Shiba, and A. Imamiya. 2001. Watermarking 3D geometric models through triangle subdivision. In Photonics West 2001-electronic imaging. International Society for Optics and Photonics.Google Scholar
  25. 25.
    Amat, P., et al. 2010. Lossless 3D steganography based on MST and connectivity modification. Signal Processing: Image Communication 25(6): 400–412.Google Scholar
  26. 26.
    Cheng, Y.-M., and C.-M. Wang. 2006. A high-capacity steganographic approach for 3D polygonal meshes. The Visual Computer 22(9–11): 845–855.CrossRefGoogle Scholar
  27. 27.
    Bogomjakov, A., C. Gotsman, and M. Isenburg. 2008. Distortion‐free steganography for polygonal meshes. In Computer graphics forum. Wiley Online Library.Google Scholar
  28. 28.
    Tu, S.-C., et al. 2010. An improved data hiding approach for polygon meshes. The Visual Computer 26(9): 1177–1181.CrossRefGoogle Scholar
  29. 29.
    Chou, C.-M., and D.-C. Tseng. 2006. A public fragile watermarking scheme for 3D model authentication. Computer-Aided Design 38(11): 1154–1165.CrossRefGoogle Scholar
  30. 30.
    Yeo, B.-L., and M.M. Yeung. 1999. Watermarking 3D objects for verification. IEEE Computer Graphics and Applications 19(1): 36–45.CrossRefGoogle Scholar
  31. 31.
    Lin, H.-Y.S., et al. 2005. Fragile watermarking for authenticating 3-D polygonal meshes. IEEE Transactions on Multimedia 7(6): 997–1006.CrossRefGoogle Scholar
  32. 32.
    Wu, H.-T., and Y.-M. Cheung. 2005. A fragile watermarking scheme for 3D meshes. In Proceedings of the 7th workshop on multimedia and security. ACM.Google Scholar
  33. 33.
    Wang, Y.-P., and S.-M. Hu. 2009. A new watermarking method for 3D models based on integral invariants. IEEE Transactions on Visualization and Computer Graphics 15(2): 285–294.CrossRefGoogle Scholar
  34. 34.
    Wang, W.-B., et al. 2008. A numerically stable fragile watermarking scheme for authenticating 3D models. Computer-Aided Design 40(5): 634–645.CrossRefGoogle Scholar
  35. 35.
    Yeung, M., and B.-L. Yeo. 1998. Fragile watermarking of three-dimensional objects. In Proceedings. 1998 International Conference on Image processing, ICIP 98. IEEE.Google Scholar
  36. 36.
    Yu, Z., H.H. Ip, and L. Kwok. 2003. A robust watermarking scheme for 3D triangular mesh models. Pattern Recognition 36(11): 2603–2614.CrossRefGoogle Scholar
  37. 37.
    Cho, J.-W., R. Prost, and H.-Y. Jung. 2007. An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms. IEEE Transactions on Signal Processing 55(1): 142–155.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zafeiriou, S., A. Tefas, and I. Pitas. 2005. Blind robust watermarking schemes for copyright protection of 3D mesh objects. IEEE Transactions on Visualization and Computer Graphics 11(5): 596–607.CrossRefGoogle Scholar
  39. 39.
    Ashourian, M., R. Enteshari, and J. Jeon. 2004. Digital watermarking of three-dimensional polygonal models in the spherical coordinate system. In Proceedings of the Computer graphics international, 2004. IEEE.Google Scholar
  40. 40.
    Darazi, R., R. Hu, and B. Macq. 2010. Applying spread transform dither modulation for 3D-mesh watermarking by using perceptual models. In 2010 IEEE international conference on acoustics speech and signal processing (ICASSP). IEEE.Google Scholar
  41. 41.
    Bors, A.G. 2006. Watermarking mesh-based representations of 3-D objects using local moments. IEEE Transactions on Image Processing 15(3): 687–701.MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wang, X., W. Qi, and P. Niu. 2007. A new adaptive digital audio watermarking based on support vector regression. IEEE Transactions on Audio, Speech, and Language Processing 15(8): 2270–2277.CrossRefGoogle Scholar
  43. 43.
    Bennour, J., and J.-L. Dugela. 2006. Protection of 3D object visual representations. In IEEE international conference on multimedia and expo. IEEE.Google Scholar
  44. 44.
    Lin, C.-H., et al. 2010. A novel semi-blind-and-semi-reversible robust watermarking scheme for 3D polygonal models. The Visual Computer 26(6–8): 1101–1111.CrossRefGoogle Scholar
  45. 45.
    Wang, K., et al. 2008. A comprehensive survey on three-dimensional mesh watermarking. IEEE Transactions on Multimedia 10(8): 1513–1527.CrossRefGoogle Scholar
  46. 46.
    Praun, E., H. Hoppe, and A. Finkelstein. 1999. Robust mesh watermarking. In Proceedings of the 26th annual conference on computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.Google Scholar
  47. 47.
    Hoppe, H. 1997. View-dependent refinement of progressive meshes. In Proceedings of the 24th annual conference on computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.Google Scholar
  48. 48.
    Kanai, S., H. Date, and T. Kishinami. 1998. Digital watermarking for 3D polygons using multiresolution wavelet decomposition. In Proceedings of the sixth IFIP WG. Citeseer.Google Scholar
  49. 49.
    Lounsbery, M., T.D. DeRose, and J. Warren. 1997. Multiresolution analysis for surfaces of arbitrary topological type. ACM Transactions on Graphics (TOG) 16(1): 34–73.CrossRefGoogle Scholar
  50. 50.
    Uccheddu, F., M. Corsini, and M. Barni. 2004. Wavelet-based blind watermarking of 3D models. In Proceedings of the 2004 workshop on multimedia and security. ACM.Google Scholar
  51. 51.
    Valette, S., and R. Prost. 2004. Wavelet-based multiresolution analysis of irregular surface meshes. IEEE Transactions on Visualization and Computer Graphics 10(2): 113–122.CrossRefGoogle Scholar
  52. 52.
    Kim, M.-S., et al. 2005. Watermarking of 3D irregular meshes based on wavelet multiresolution analysis. In Digital Watermarking, 313–324. Berlin: Springer.Google Scholar
  53. 53.
    Cho, W.-H., et al. 2004. Watermarking technique for authentication of 3-D polygonal meshes. In Digital Watermarking, 259–270. Berlin: Springer.Google Scholar
  54. 54.
    Wang, K., et al. 2008. A fragile watermarking scheme for authentication of semi-regular meshes. Proceedings of the Eurographics Short Papers 8(5–8): 36.Google Scholar
  55. 55.
    Yin, K., et al. 2001. Robust mesh watermarking based on multiresolution processing. Computers and Graphics 25(3): 409–420.CrossRefGoogle Scholar
  56. 56.
    Guskov, I., W. Sweldens, and P. Schröder. 1999. Multiresolution signal processing for meshes. In Proceedings of the 26th annual conference on computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.Google Scholar
  57. 57.
    Ohbuchi, R., A. Mukaiyama, and S. Takahashi. 2002. A frequency-domain approach to watermarking 3D shapes. In Computer graphics forum. Hoboken: Wiley-Blackwell.Google Scholar
  58. 58.
    Bollobás, B. 2013. Modern graph theory, vol. 184. Berlin: Springer Science & Business Media.Google Scholar
  59. 59.
    Cayre, F., et al. 2003. Application of spectral decomposition to compression and watermarking of 3D triangle mesh geometry. Signal Processing: Image Communication 18(4): 309–319.MathSciNetGoogle Scholar
  60. 60.
    Abdallah, E.E., A.B. Hamza, and P. Bhattacharya. 2007. Spectral graph-theoretic approach to 3D mesh watermarking. In Proceedings of graphics interface 2007. ACM.Google Scholar
  61. 61.
    Wu, J., and L. Kobbelt. 2005. Efficient spectral watermarking of large meshes with orthogonal basis functions. The Visual Computer 21(8–10): 848–857.CrossRefGoogle Scholar
  62. 62.
    Gelasca, E.D., et al. 2005. Objective evaluation of the perceptual quality of 3D watermarking. In IEEE international conference on image processing, ICIP 2005. IEEE.Google Scholar
  63. 63.
    Huttenlocher, D.P., G.A. Klanderman, and W.J. Rucklidge. 1993. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9): 850–863.CrossRefGoogle Scholar
  64. 64.
    Guezlec, A. 2001. “Meshsweeper”: dynamic point-to-polygonal mesh distance and applications. IEEE Transactions on Visualization and Computer Graphics 7(1): 47–61.CrossRefGoogle Scholar
  65. 65.
    Alliez, P., et al. 1999. Mesh approximation using a volume-based metric. In Proceedings of the seventh pacific conference on computer graphics and applications. IEEE.Google Scholar
  66. 66.
    Kim, S.-J., S.-K. Kim, and C.-H. Kim. 2002. Discrete differential error metric for surface simplification. In Proceedings of the 10th pacific conference on computer graphics and applications. IEEE.Google Scholar
  67. 67.
    Lavoué, G. 2009. A local roughness measure for 3D meshes and its application to visual masking. ACM Transactions on Applied perception (TAP) 5(4): 21.Google Scholar
  68. 68.
    Corsini, M., et al. 2007. Watermarked 3-D mesh quality assessment. IEEE Transactions on Multimedia 9(2): 247–256.MathSciNetCrossRefGoogle Scholar
  69. 69.
    Reddy, M. 2001. Perceptually optimized 3D graphics. IEEE Computer Graphics and Applications 5: 68–75.CrossRefGoogle Scholar
  70. 70.
    Bian, Z., S.-M. Hu, and R.R. Martin. 2009. Evaluation for small visual difference between conforming meshes on strain field. Journal of Computer Science and Technology 24(1): 65–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Mohammad Ali Nematollahi
    • 1
  • Chalee Vorakulpipat
    • 1
  • Hamurabi Gamboa Rosales
    • 2
  1. 1.National Electronics and Computer Technology Center (NECTEC)PathumthaniThailand
  2. 2.Universidad Autónoma de ZacatecasZacatecasMexico

Personalised recommendations