Advertisement

Speech Watermarking

  • Mohammad Ali Nematollahi
  • Chalee Vorakulpipat
  • Hamurabi Gamboa Rosales
Chapter
Part of the Springer Topics in Signal Processing book series (STSP, volume 11)

Abstract

Speech is the most important form of human communication which carries valuable information on who/what/how speaker speaks. Currently, applying speech signal for computer science is growing due to three major reasons [1]. First, speech is easy to be produced, captured, and transmitted as it has a lower cost compared to image. Second, speech signal can be captured from a distance (non-invasive). Third, speech carries other types of information such as emotion, age, and gender.

Keywords

Speech Signal Audio Watermark Watermark Signal Quantization Index Modulation Watermark Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nematollahi, M.A., and S. Al-Haddad. 2015. Distant speaker recognition: An overview. International Journal of Humanoid Robotics 1550032.Google Scholar
  2. 2.
    William, S. 2006. Cryptography and network security, 4 edn. Pearson Education India.Google Scholar
  3. 3.
    Huang, H.-C., and W.-C. Fang. 2010. Metadata-based image watermarking for copyright protection. Simulation Modelling Practice and Theory 18(4): 436–445.CrossRefGoogle Scholar
  4. 4.
    Huang, H.-C., et al. 2011. Tabu search based multi-watermarks embedding algorithm with multiple description coding. Information Sciences 181(16): 3379–3396.CrossRefGoogle Scholar
  5. 5.
    Faundez-Zanuy, M., J.J. Lucena-Molina, and M. Hagmüller. 2010. Speech watermarking: An approach for the forensic analysis of digital telephonic recordings*. Journal of Forensic Sciences 55(4): 1080–1087.CrossRefGoogle Scholar
  6. 6.
    Faundez-Zanuy, M. 2010. Digital watermarking: New speech and image applications. Advances in Nonlinear Speech Processing, 84–89.Google Scholar
  7. 7.
    Faundez-Zanuy, M., M. Hagmüller, and G. Kubin. 2006. Speaker verification security improvement by means of speech watermarking. Speech Communication 48(12): 1608–1619.CrossRefzbMATHGoogle Scholar
  8. 8.
    Faundez-Zanuy, M., M. Hagmüller, and G. Kubin. 2007. Speaker identification security improvement by means of speech watermarking. Pattern Recognition 40(11): 3027–3034.CrossRefzbMATHGoogle Scholar
  9. 9.
    Hagmüller, M., et al. 2004. Speech watermarking for air traffic control. Watermark 8(9): 10.Google Scholar
  10. 10.
    Hofbauer, K., G. Kubin, and W.B. Kleijn. 2009. Speech watermarking for analog flat-fading bandpass channels. IEEE Transactions on Audio, Speech, and Language Processing 17(8): 1624–1637.CrossRefGoogle Scholar
  11. 11.
    Hofbauer, K., H. Hering, and G. Kubin. 2005. Speech watermarking for the VHF radio channel. In Proceedings of the 4th Eurocontrol innovative research workshop.Google Scholar
  12. 12.
    Rabiner, L.R., and R.W. Schafer. 1978. Digital processing of speech signals. Prentice Hall.Google Scholar
  13. 13.
    Al-Shoshan, A.I. 2006. Speech and music classification and separation: A review. Journal of King Saud University 19(1): 95–133.Google Scholar
  14. 14.
    Flanagan, J.L. 1972. Speech analysis: Synthesis and perception. Google Scholar
  15. 15.
    Rabiner, L.R., and R.W. Schafer. 2009. Theory and application of digital speech processing. Preliminary Edition.Google Scholar
  16. 16.
    Blamey, P., et al. 1987. Acoustic parameters measured by a formant-estimating speech processor for a multiple-channel cochlear implant. The Journal of the Acoustical Society of America 82(1): 38–47.CrossRefGoogle Scholar
  17. 17.
    Schroeder, M.R., B.S. Atal, and J. Hall. 1979. Optimizing digital speech coders by exploiting masking properties of the human ear. The Journal of the Acoustical Society of America 66(6): 1647–1652.CrossRefGoogle Scholar
  18. 18.
    Taal, C.H., R.C. Hendriks, and R. Heusdens. 2012. A low-complexity spectro-temporal distortion measure for audio processing applications. IEEE Transactions on Audio, Speech, and Language Processing 20(5): 1553–1564.CrossRefGoogle Scholar
  19. 19.
    Swanson, M.D., et al. 1998. Robust audio watermarking using perceptual masking. Signal Processing 66(3): 337–355.CrossRefzbMATHGoogle Scholar
  20. 20.
    Bassia, P., I. Pitas, and N. Nikolaidis. 2001. Robust audio watermarking in the time domain. IEEE Transactions on Multimedia 3(2): 232–241.CrossRefGoogle Scholar
  21. 21.
    Cvejic, N., A. Keskinarkaus, and T. Seppanen. 2001. Audio watermarking using m-sequences and temporal masking. In IEEE workshop on the applications of signal processing to audio and acoustics, 2001. IEEE.Google Scholar
  22. 22.
    Kubin, G., B. Atal, and W. Kleijn. 1993. Performance of noise excitation for unvoiced speech. In Proceedings of IEEE workshop on speech coding for telecommunications, 1993. IEEE.Google Scholar
  23. 23.
    Kim, D.-S. 2003. Perceptual phase quantization of speech. IEEE Transactions on Speech and Audio Processing 11(4): 355–364.CrossRefGoogle Scholar
  24. 24.
    Takahashi, A., R. Nishimura, and Y. Suzuki. 2005. Multiple watermarks for stereo audio signals using phase-modulation techniques. IEEE Transactions on Signal Processing 53(2): 806–815.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Malvar, H.S. 1992. Signal processing with lapped transforms. Artech House.Google Scholar
  26. 26.
    Malvar, H.S. 1992. Extended lapped transforms: Properties, applications, and fast algorithms. IEEE Transactions on Signal Processing 40(11): 2703–2714.CrossRefzbMATHGoogle Scholar
  27. 27.
    Shlien, S. 1997. The modulated lapped transform, its time-varying forms, and its applications to audio coding standards. IEEE Transactions on Speech and Audio Processing 5(4): 359–366.CrossRefGoogle Scholar
  28. 28.
    Cox, I.J., et al. 2002. Digital watermarking. Vol. 53. Springer.Google Scholar
  29. 29.
    Costa, M.H. 1983. Writing on dirty paper (corresp.). IEEE Transactions on Information Theory 29(3): 439–441.Google Scholar
  30. 30.
    Chu, W.C. 2004. Speech coding algorithms: Foundation and evolution of standardized coders. Wiley.Google Scholar
  31. 31.
    Arora, S. and S. Emmanuel. 2003. Adaptive spread spectrum based watermarking of speech. In 9th National undergraduate research opportunities programme congress Poster 15.Google Scholar
  32. 32.
    Cheng, Q. and J. Sorensen. 2001. Spread spectrum signaling for speech watermarking. In Proceedings (ICASSP’01) IEEE international conference on acoustics, speech, and signal processing, 2001. IEEE.Google Scholar
  33. 33.
    Geiser, B. and P. Vary. 2008. High rate data hiding in ACELP speech codecs. In IEEE international conference on acoustics, speech and signal processing, 2008. ICASSP 2008. IEEE.Google Scholar
  34. 34.
    Lacy, J., et al. 1998. On combining watermarking with perceptual coding. In Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, 1998. IEEE.Google Scholar
  35. 35.
    Liu, C.-H. and O.T.-C. Chen. 2004. Fragile speech watermarking scheme with recovering speech contents. In The 2004 47th midwest symposium on circuits and systems, 2004. MWSCAS’04. IEEE.Google Scholar
  36. 36.
    Zhe-Ming, L., Y. Bin, and S. Sheng-He. 2005. Watermarking combined with CELP speech coding for authentication. IEICE Transactions On Information And Systems 88(2): 330–334.Google Scholar
  37. 37.
    Yan, B., and Y.-J. Guo. 2013. Speech authentication by semi-fragile speech watermarking utilizing analysis by synthesis and spectral distortion optimization. Multimedia Tools And Applications 67(2): 383–405.CrossRefGoogle Scholar
  38. 38.
    Gurijala, A. 2007. Speech watermarking through parametric modeling. ProQuest.Google Scholar
  39. 39.
    Chen, S. and H. Leung. 2006. Concurrent data transmission through PSTN by CDMA. In Proceedings of 2006 IEEE international symposium on circuits and systems, 2006. ISCAS 2006. IEEE.Google Scholar
  40. 40.
    Malik, H.M., R. Ansari, and A.A. Khokhar. 2007. Robust data hiding in audio using allpass filters. IEEE Transactions on Audio, Speech, and Language Processing 15(4): 1296–1304.CrossRefGoogle Scholar
  41. 41.
    Narimannejad, M. and S.M. Ahadi. 2011. Watermarking of speech signal through phase quantization of sinusoidal model. In 19th Iranian conference on electrical engineering (ICEE), 2011. IEEE.Google Scholar
  42. 42.
    Hatada, M., et al. 2002. Digital watermarking based on process of speech production. In ITCom 2002: the convergence of information technologies and communications. International Society for Optics and Photonics.Google Scholar
  43. 43.
    Garcia-Hernandez, J.J., M. Nakano-Miyatake, and H. Perez-Meana. 2008. Data hiding in audio signal using rational dither modulation. IEICE Electronics Express 5(7): 217–222.CrossRefGoogle Scholar
  44. 44.
    Al-Haj, A. 2014. An imperceptible and robust audio watermarking algorithm. EURASIP Journal on Audio, Speech, and Music Processing 2014(1): 1–12.CrossRefGoogle Scholar
  45. 45.
    Bhat, V., I. Sengupta, and A. Das. 2010. An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digital Signal Processing 20(6): 1547–1558.CrossRefGoogle Scholar
  46. 46.
    Xiang, S. 2011. Audio watermarking robust against D/A and A/D conversions. EURASIP Journal on Advances In Signal Processing 2011: 3.CrossRefGoogle Scholar
  47. 47.
    Özer, H., B. Sankur, and N. Memon. 2005. An SVD-based audio watermarking technique. In Proceedings of the 7th workshop on multimedia and security. ACM.Google Scholar
  48. 48.
    Wang, X., W. Qi, and P. Niu. 2007. A new adaptive digital audio watermarking based on support vector regression. IEEE Transactions on Audio, Speech, and Language Processing 15(8): 2270–2277.CrossRefGoogle Scholar
  49. 49.
    Lei, B., et al. 2012. A robust audio watermarking scheme based on lifting wavelet transform and singular value decomposition. Signal Processing 92(9): 1985–2001.CrossRefGoogle Scholar
  50. 50.
    Lei, B.Y., I.Y. Soon, and Z. Li. 2011. Blind and robust audio watermarking scheme based on SVD–DCT. Signal Processing 91(8): 1973–1984.CrossRefzbMATHGoogle Scholar
  51. 51.
    Hu, H.-T., et al. 2014. Incorporation of perceptually adaptive QIM with singular value decomposition for blind audio watermarking. EURASIP Journal on Advances in Signal Processing 2014(1): 1–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Mohammad Ali Nematollahi
    • 1
  • Chalee Vorakulpipat
    • 1
  • Hamurabi Gamboa Rosales
    • 2
  1. 1.National Electronics and Computer Technology Center (NECTEC)PathumthaniThailand
  2. 2.Universidad Autónoma de ZacatecasZacatecasMexico

Personalised recommendations