Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 584 Accesses

Abstract

In this an introduction to DC distributed power systems, Constant Power Loads (CPLs) and its behaviour is presented. Analysis of small-signal stability of generalised and converter based DC systems with CPL is also presented in this chapter. Furthermore, a brief review of major techniques to mitigate CPL induced instabilities is presented, followed by motivation and organization of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ford, A.: System dynamics and the electric power industry. Syst. Dyn. Rev. 13(1), 57–85 (1997)

    Article  Google Scholar 

  2. Sulzberger, C.L.: Triumph of ac-from pearl street to niagara. IEEE Power Energy Mag. 99(3), 64–67 (2003)

    Article  Google Scholar 

  3. Sulzberger, C.L.: Triumph of ac. 2. the battle of the currents. IEEE Power Energy Mag. 1(4), 70–73 (2003)

    Google Scholar 

  4. Emadi, A., Ehsani, M.: Multi-converter power electronic systems: definition and applications. In: 2001 IEEE 32nd Annual Power Electronics Specialists Conference, 2001. PESC, vol. 2, pp. 1230–1236. IEEE (2001)

    Google Scholar 

  5. Ito, Y., Zhongqing, Y., Akagi, H.: Dc microgrid based distribution power generation system. In: The 4th International Power Electronics and Motion Control Conference, 2004. IPEMC 2004, vol. 3, pp. 1740–1745. IEEE (2004)

    Google Scholar 

  6. Kakigano, H., Miura, Y., Ise, T.: Low-voltage bipolar-type dc microgrid for super high quality distribution. IEEE Trans. Power Electron. 25(12), 3066–3075 (2010)

    Article  Google Scholar 

  7. Narasimharaju, L., Dubey, S.P., Singh, S.: Intelligent technique for improved transient and dynamic response of bidirectional dc-dc converter. In: 2010 International Conference on Power, Control and Embedded Systems (ICPCES), pp. 1–6. IEEE (2010)

    Google Scholar 

  8. Chakraborty, C., Ho-Ching Iu, H., Dah-Chuan Lu, D.: Power converters, control, and energy management for distributed generation. IEEE Trans. Ind. Electron. 62(7), 4466–4470 (2015)

    Article  Google Scholar 

  9. Guerrero, J., Davoudi, A., Aminifar, F., Jatskevich, J., Kakigano, H.: Guest editorial: special section on smart dc distribution systems. IEEE Trans. Smart Grid 5(5), 2473–2475 (2014)

    Google Scholar 

  10. Singh, R., Asif, A., Venayagamoorthy, G.K., Lakhtakia, A., Abdelhamid, M., Alapatt, G.F., Ladner, D., et al.: Emerging role of photovoltaics for sustainably powering underdeveloped, emerging, and developed economies. In: 2014 2nd International Conference on Green Energy and Technology (ICGET), pp. 1–8. IEEE (2014)

    Google Scholar 

  11. Diaz, E.R., Su, X., Savaghebi, M., Vasquez, J.C., Han, M., Guerrero, J.M.: Intelligent dc microgrid living laboratories - a chinese-danish cooperation project. In: 2015 IEEE First International Conference on DC Microgrids (ICDCM), pp. 365–370 (2015)

    Google Scholar 

  12. Kwon, S., Kim, J., Song, I., Park, Y.: Current development and future plan for smart distribution grid in korea. In: SmartGrids for Distribution, 2008. IET-CIRED. CIRED Seminar, pp. 1–4 (2008)

    Google Scholar 

  13. Marnay, C., Aki, H., Hirose, K., Kwasinski, A., Ogura, S., Shinji, T.: Japan’s pivot to resilience: How two microgrids fared after the 2011 earthquake. IEEE Power Energy Mag. 13(3), 44–57 (2015)

    Google Scholar 

  14. Patterson, B.: Dc, come home: Dc microgrids and the birth of the “enernet”. IEEE Power Energy Mag. 10(6), 60–69 (2012)

    Google Scholar 

  15. AalborgUniversity: Intellegent dc microgrid living lab (2015). http://www.et.aau.dk/research-programmes/microgrids/activities/intelligent-dc-microgrid-living-lab/. Accessed 28 July 2015

  16. Romero Aguero, J.: Guest editorial special section on applications of smart grid technologies on power distribution systems. IEEE Trans. Smart Grid 3(2), 849 (2012)

    Google Scholar 

  17. AlLee, G., Tschudi, W.: Edison redux: 380 vdc brings reliability and efficiency to sustainable data centers. IEEE Power Energy Mag. 10(6), 50–59 (2012)

    Google Scholar 

  18. Shekel, J.: Nonlinear problems in the design of cable-powered distribution networks. IEEE Trans. Cable Telev. 1(1), 11–17 (1976)

    Google Scholar 

  19. Belkhayat, M., Cooley, R., Witulski, A.: Large signal stability criteria for distributed systems with constant power loads. In: 26th Annual IEEE Power Electronics Specialists Conference, 1995. PESC 1995 Record, vol. 2, pp. 1333–1338. IEEE (1995)

    Google Scholar 

  20. Hodge, C., Flower, J., Macalindin, A.: Dc power system stability. In: Electric Ship Technologies Symposium, 2009. ESTS 2009. IEEE, pp. 433–439. IEEE (2009)

    Google Scholar 

  21. Emadi, A., Khaligh, A., Rivetta, C.H., Williamson, G.A.: Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans. Veh. Technol. 55(4), 1112–1125 (2006)

    Article  Google Scholar 

  22. Kwasinski, A., Onwuchekwa, C.N.: Dynamic behavior and stabilization of dc microgrids with instantaneous constant-power loads. IEEE Trans. Power Electron. 26(3), 822–834 (2011)

    Article  Google Scholar 

  23. Zhao, F., Li, N., Yin, Z., Tang, X.: Small-signal modeling and stability analysis of dc microgrid with multiple type of loads. In: 2014 International Conference on Power System Technology (POWERCON), pp. 3309–3315. IEEE (2014)

    Google Scholar 

  24. Arcidiacono, V., Monti, A., Sulligoi, G.: An innovative generation control system for improving design and stability of shipboard medium-voltage dc integrated power system. In: Electric Ship Technologies Symposium, 2009. ESTS 2009. IEEE, pp. 152–156. IEEE (2009)

    Google Scholar 

  25. LeSage, J.R., Longoria, R.G., Shutt, W.: Power system stability analysis of synthesized complex impedance loads on an electric ship. In: 2011 IEEE Electric Ship Technologies Symposium (ESTS), pp. 34–37. IEEE (2011)

    Google Scholar 

  26. Singer, S.: Realization of loss-free resistive elements. IEEE Trans. Circuits Syst. 37(1), 54–60 (1990)

    Article  MathSciNet  Google Scholar 

  27. Cespedes, M., Xing, L., Sun, J.: Constant-power load system stabilization by passive damping. IEEE Trans. Power Electron. 26(7), 1832–1836 (2011)

    Article  Google Scholar 

  28. Gao, F., Bozhko, S., Yeoh, S., Asher, G., Wheeler, P.: Stability of multi-source droop-controlled electrical power system for more-electric aircraft. In: 2014 IEEE International Conference on Intelligent Energy and Power Systems (IEPS), pp. 122–126. IEEE (2014)

    Google Scholar 

  29. Luo, S.: A review of distributed power systems part i: Dc distributed power system. IEEE Aerosp. Electron. Syst. Mag. 20(8), 5–16 (2005)

    Article  Google Scholar 

  30. Kislovski, A.: Optimizing the reliability of dc power plants with backup batteries and constant-power loads. In: Tenth Annual Applied Power Electronics Conference and Exposition, 1995. APEC 1995. Conference Proceedings 1995, pp. 957–964. IEEE (1995)

    Google Scholar 

  31. Olsson, E.: Constant-power rectifiers for constant-power telecom loads. In: 24th Annual International Telecommunications Energy Conference, 2002. INTELEC, pp. 591–595. IEEE (2002)

    Google Scholar 

  32. Cupelli, M., Zhu, L., Monti, A.: Why ideal constant power loads are not the worst case condition from a control standpoint. IEEE Trans. Smart Grid (2015, to appear)

    Google Scholar 

  33. Rahimi, A.M., Emadi, A.: Active damping in dc/dc power electronic converters: a novel method to overcome the problems of constant power loads. IEEE Trans. Ind. Electron. 56(5), 1428–1439 (2009)

    Article  Google Scholar 

  34. Brombach, J., Jordan, M., Grumm, F., Schulz, D.: Influence of small constant-power-loads on the power supply system of an aircraft. In: 2013 8th International Conference on Compatibility and Power Electronics (CPE), pp. 97–102. IEEE (2013)

    Google Scholar 

  35. Doerry, N., Amy, J.: Functional decomposition of a medium voltage dc integrated power system. In: ASNE Shipbuilding in Support of the Global War on Terrorism Symposium, pp. 1–21 (2008)

    Google Scholar 

  36. Rahimi, A.M., Emadi, A.: Discontinuous-conduction mode dc/dc converters feeding constant-power loads. IEEE Trans. Ind. Electron. 57(4), 1318–1329 (2010)

    Article  Google Scholar 

  37. Mingfei, W., LU, D.D.C.: Active stabilization methods of electric power systems with constant power loads: a review. J. Modern Power Syst. Clean Energy 2(3), 233–243 (2014)

    Article  Google Scholar 

  38. Jusoh, A.B.: The instability effect of constant power loads. In: National Power and Energy Conference, 2004. PECon 2004. Proceedings, pp. 175–179. IEEE (2004)

    Google Scholar 

  39. Khaligh, A.: Realization of parasitics in stability of dc-dc converters loaded by constant power loads in advanced multiconverter automotive systems. IEEE Trans. Ind. Electron. 55(6), 2295–2305 (2008)

    Article  Google Scholar 

  40. Rivetta, C.H., Emadi, A., Williamson, G.A., Jayabalan, R., Fahimi, B.: Analysis and control of a buck dc-dc converter operating with constant power load in sea and undersea vehicles. IEEE Trans. Ind. Appl. 42(2), 559–572 (2006)

    Article  Google Scholar 

  41. Li, Y., Vannorsdel, K.R., Zirger, A.J., Norris, M., Maksimovic, D.: Current mode control for boost converters with constant power loads. IEEE Trans. Circuits Syst. I Regular Papers 59(1), 198–206 (2012)

    Article  MathSciNet  Google Scholar 

  42. Radwan, A.A.A., Mohamed, Y.R.: Linear active stabilization of converter-dominated dc microgrids. IEEE Trans. Smart Grid 3(1), 203–216 (2012)

    Article  Google Scholar 

  43. Radwan, A.A.A., Mohamed, Y.: Assessment and mitigation of interaction dynamics in hybrid ac/dc distribution generation systems. IEEE Trans. Smart Grid 3(3), 1382–1393 (2012)

    Article  Google Scholar 

  44. Ahmadi, R., Ferdowsi, M.: Improving the performance of a line regulating converter in a converter-dominated dc microgrid system. IEEE Trans. Smart Grid 5(5), 2553–2563 (2014)

    Article  Google Scholar 

  45. Wu, M., Lu, D.D.: A novel stabilization method of lc input filter with constant power loads without load performance compromise in dc microgrids. IEEE Trans. Ind. Electron. 62(7), 4552–4562 (2015)

    Article  Google Scholar 

  46. Shafiee, Q., Dragicevic, T., Vasquez, J.C., Guerrero, J.M.: Modeling, stability analysis and active stabilization of multiple dc-microgrid clusters. In: IEEE International Energy Conference (ENERGYCON), 2014, pp. 1284–1290. IEEE (2014)

    Google Scholar 

  47. Cai, W., Fahimi, B., Cosoroaba, E., Yi, F.: Stability analysis and voltage control method based on virtual resistor and proportional voltage feedback loop for cascaded dc-dc converters. In: 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3016–3022. IEEE (2014)

    Google Scholar 

  48. Lu, X., Sun, K., Huang, L., Guerrero, J.M., Vasquez, J.C., Xing, Y.: Virtual impedance based stability improvement for dc microgrids with constant power loads. In: 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2670–2675. IEEE (2014)

    Google Scholar 

  49. Xuhui, Z., Wen, X., Qiujian, G., Feng, Z.: A new control scheme for dc-dc converter feeding constant power load in electric vehicle. In: 2011 International Conference on Electrical Machines and Systems (ICEMS), pp. 1–4. IEEE (2011)

    Google Scholar 

  50. Ashourloo, M., Khorsandi, A., Mokhtari, H.: Stabilization of dc microgrids with constant-power loads by an active damping method. In: 2013 4th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pp. 471–475. IEEE (2013)

    Google Scholar 

  51. Kuhn, M., Ji, Y., Schrder, D.: Stability studies of critical dc power system component for more electric aircraft using \(\mu \) sensitivity. In: Mediterranean Conference on Control & Automation, 2007. MED 2007, pp. 1–6. IEEE (2007)

    Google Scholar 

  52. Smithson, S.C., Williamson, S.S.: Constant power loads in more electric vehicles-an overview. In: IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pp. 2914–2922. IEEE (2012)

    Google Scholar 

  53. Glover, S., Sudhoff, S.: An experimentally validated nonlinear stabilizing control for power electronics based power systems. SAE Trans. 107(1), 68–77 (1998)

    Google Scholar 

  54. Sudhoff, S., Corzine, K., Glover, S., Hegner, H., Robey Jr., H.: Dc link stabilized field oriented control of electric propulsion systems. IEEE Trans. Energy Conversion 13(1), 27–33 (1998)

    Article  Google Scholar 

  55. Liu, X., Forsyth, A.J., Cross, A.M.: Negative input-resistance compensator for a constant power load. IEEE Trans. Ind. Electron. 54(6), 3188–3196 (2007)

    Article  Google Scholar 

  56. Liu, X., Forsyth, A.: Input filter state feed-forward stabilising controller for constant power load systems. IET Electric Power Appl. 2(5), 306–315 (2008)

    Article  Google Scholar 

  57. Liutanakul, P., Awan, A.B., Pierfederici, S., Nahid-Mobarakeh, B., Meibody-Tabar, F.: Linear stabilization of a dc bus supplying a constant power load: a general design approach. IEEE Trans. Power Electron. 25(2), 475–488 (2010)

    Article  Google Scholar 

  58. Mohamed, Y.R., Radwan, A.A.A., Lee, T.: Decoupled reference-voltage-based active dc-link stabilization for pmsm drives with tight-speed regulation. IEEE Trans. Ind. Electron. 59(12), 4523–4536 (2012)

    Article  Google Scholar 

  59. Magne, P., Nahid-Mobarakeh, B., Pierfederici, S.: General active global stabilization of multiloads dc-power networks. IEEE Trans. Power Electron. 27(4), 1788–1798 (2012)

    Article  Google Scholar 

  60. Magne, P., Nahid-Mobarakeh, B., Pierfederici, S.: Active stabilization of dc microgrids without remote sensors for more electric aircraft. IEEE Trans. Ind. Appl. 49(5), 2352–2360 (2013)

    Article  Google Scholar 

  61. Magne, P., Marx, D., Nahid-Mobarakeh, B., Pierfederici, S.: Large-signal stabilization of a dc-link supplying a constant power load using a virtual capacitor: impact on the domain of attraction. IEEE Trans. Ind. Appl. 48(3), 878–887 (2012)

    Article  Google Scholar 

  62. Magne, P., Nahid-Mobarakeh, B., Pierfederici, S.: Dynamic consideration of dc microgrids with constant power loads and active damping system a design method for fault-tolerant stabilizing system. IEEE J. Emerg. Sel. Topics Power Electron. 2(3), 562–570 (2014)

    Article  Google Scholar 

  63. Mosskull, H.: Optimal stabilization of constant power loads with input lc-filters. Control Eng. Pract. 27, 61–73 (2014)

    Article  Google Scholar 

  64. Awan, A.B., Nahid-Mobarakeh, B., Pierfederici, S., Meibody-Tabar, F.: Nonlinear stabilization of a dc-bus supplying a constant power load. In: IEEE Industry Applications Society Annual Meeting, 2009. IAS 2009, pp. 1–8. IEEE (2009)

    Google Scholar 

  65. Inoue, K., Kato, T., Inoue, M., Moriyama, Y., Nishii, K.: An oscillation suppression method of a dc power supply system with a constant power load and a lc filter. In: 2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–4. IEEE (2012)

    Google Scholar 

  66. Carmeli, M.S., Forlani, D., Grillo, S., Pinetti, R., Ragaini, E., Tironi, E.: A stabilization method for dc networks with constant-power loads. In: 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), pp. 617–622. IEEE (2012)

    Google Scholar 

  67. Pizniur, O., Shan, Z., Jatskevich, J.: Ensuring dynamic stability of constant power loads in dc telecom power systems and data centers using active damping. In: 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC), pp. 1–8. IEEE (2014)

    Google Scholar 

  68. Emadi, A., Ehsani, M.: Negative impedance stabilizing controls for pwm dc-dc converters using feedback linearization techniques. In: (IECEC) 35th Intersociety Energy Conversion Engineering Conference and Exhibit, 2000, vol. 1, pp. 613–620. IEEE (2000)

    Google Scholar 

  69. Ciezki, J., Ashton, R.: The application of feedback linearization techniques to the stabilization of dc-to-dc converters with constant power loads. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998. ISCAS 1998, vol. 3, pp. 526–529. IEEE (1998)

    Google Scholar 

  70. Cupelli, M., Moghimi, M., Riccobono, A., Monti, A.: A comparison between synergetic control and feedback linearization for stabilizing mvdc microgrids with constant power load. In: 2014 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1–6. IEEE (2014)

    Google Scholar 

  71. Rahimi, A.M., Williamson, G.A., Emadi, A.: Loop-cancellation technique: a novel nonlinear feedback to overcome the destabilizing effect of constant-power loads. IEEE Trans. Veh. Technol. 59(2), 650–661 (2010)

    Article  Google Scholar 

  72. Solsona, J.A., Gomez Jorge, S., Busada, C.A.: Nonlinear control of a buck converter which feeds a constant power load. IEEE Trans. Power Electron. 30(12), 7193–7201 (2015)

    Article  Google Scholar 

  73. Sulligoi, G., Bosich, D., Giadrossi, G., Zhu, L., Cupelli, M., Monti, A.: Multiconverter medium voltage dc power systems on ships: constant-power loads instability solution using linearization via state feedback control. IEEE Trans. Smart Grid 5(5), 2543–2552 (2014)

    Article  Google Scholar 

  74. Khaligh, A., Rahimi, A.M., Emadi, A.: Negative impedance stabilizing pulse adjustment control technique for dc/dc converters operating in discontinuous conduction mode and driving constant power loads. IEEE Trans. Veh. Technol. 56(4), 2005–2016 (2007)

    Article  Google Scholar 

  75. Khaligh, A., Rahimi, A.M., Emadi, A.: Modified pulse-adjustment technique to control dc/dc converters driving variable constant-power loads. IEEE Trans. Ind. Electron. 55(3), 1133–1146 (2008)

    Article  Google Scholar 

  76. Xu, H., Wen, X., Lipo, T.A.: Digital charge control of boost converter with constant power machine load. In: International Conference on Electrical Machines and Systems, 2008. ICEMS 2008, pp. 999–1004. IEEE (2008)

    Google Scholar 

  77. Utkin, V.I.: Sliding modes and their application in variable structure systems. Mir Publishers, Moscow (1978)

    MATH  Google Scholar 

  78. Zhao, Y., Qiao, W., Ha, D.: A sliding-mode duty-ratio controller for dc/dc buck converters with constant power loads. IEEE Trans. Ind. Appl. 50(2), 1448–1458 (2014)

    Article  Google Scholar 

  79. Anun, M., Ordonez, M., Zurbriggen, I., Oggier, G.: Circular switching surface technique: high-performance constant power load stabilization for electric vehicle systems. IEEE Trans. Power Electron. 30(8), 4560–4572 (2015)

    Google Scholar 

  80. Tahim, A.P., Pagano, D.J., Heldwein, M.L., Ponce, E.: Control of interconnected power electronic converters in dc distribution systems. In: Power Electronics Conference (COBEP), 2011 Brazilian, pp. 269–274. IEEE (2011)

    Google Scholar 

  81. Kondratiev, I., Santi, E., Dougal, R.: Nonlinear synergetic control for m parallel-connected dc-dc buck converters: droop current sharing. In: 37th IEEE Power Electronics Specialists Conference, 2006. PESC 2006, pp. 1–7. IEEE (2006)

    Google Scholar 

  82. Santi, E., Monti, A., Li, D., Proddutur, K., Dougal, R.A.: Synergetic control for dc-dc boost converter: implementation options. IEEE Trans. Ind. Appl. 39(6), 1803–1813 (2003)

    Article  Google Scholar 

  83. Kondratiev, I., Santi, E., Dougal, R., Veselov, G.: Synergetic control for dc-dc buck converters with constant power load. In: 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004. PESC 04, vol. 5, pp. 3758–3764. IEEE (2004)

    Google Scholar 

  84. Kondratiev, I., Dougal, R.: General synergetic control strategies for arbitrary number of paralleled buck converters feeding constant power load: implementation of dynamic current sharing. In: 2006 IEEE International Symposium on Industrial Electronics, vol. 1, pp. 257–261. IEEE (2006)

    Google Scholar 

  85. Guo, X., Feng, Q., et al.: Passivity-based controller design for pwm dc/dc buck current regulator. In: Lecture Notes in Engineering and Computer Science, pp. 875–878 (2008)

    Google Scholar 

  86. Sira-Ramirez, H., Ortega, R.: Passivity-based controllers for the stabilization of dc-to-dc power converters. In: Proceedings of the 34th IEEE Conference on Decision and Control, 1995, vol. 4, pp. 3471–3476. IEEE (1995)

    Google Scholar 

  87. Leyva, R., Cid-Pastor, A., Alonso, C., Queinnec, I., Tarbouriech, S., Martinez-Salamero, L.: Passivity-based integral control of a boost converter for large-signal stability. IEE Proc. Control Theory Appl. 153(2), 139–146 (2006)

    Article  Google Scholar 

  88. Zeng, J., Zhang, Z., Qiao, W.: An interconnection and damping assignment passivity-based controller for a dc-dc boost converter with a constant power load. IEEE Trans. Ind. Appl. 50(4), 2314–2322 (2014)

    Article  Google Scholar 

  89. Lenz, E., Pagano, D.J.: Nonlinear control for a bidirectional power converter in a dc microgrid. In: 9th IFAC Symposium on Nonlinear Control Systems (NOLCOS), pp. 359–364. IFAC (2013)

    Google Scholar 

  90. Wang, J., Howe, D.: A power shaping stabilizing control strategy for dc power systems with constant power loads. IEEE Trans. Power Electron. 23(6), 2982–2989 (2008)

    Article  Google Scholar 

  91. Huddy, S.R., Skufca, J.D.: Amplitude death solutions for stabilization of dc microgrids with instantaneous constant-power loads. IEEE Trans. Power Electron. 28(1), 247–253 (2013)

    Article  Google Scholar 

  92. Konishi, K., Sugitani, Y., Hara, N.: Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control. Phys. Rev. E 89(2), 022–906, 1–8 (2014)

    Google Scholar 

  93. Konishi, K., Sugitani, Y., Hara, N.: Dynamics of dc bus networks and their stabilization by decentralized delayed feedback. Phys Rev E 91(1), 012–911, 1–9 (2015)

    Google Scholar 

  94. Kim, S., Williamson, S.S.: Negative impedance instability compensation in more electric aircraft dc power systems using state space pole placement control. In: 2011 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6. IEEE (2011)

    Google Scholar 

  95. Hou, R., Magne, P., Bilgin, B., Wirasingha, S., Emadi, A.: Dynamic analysis of the interaction between an interleaved boost converter with coupled inductor and a constant power load. In: 2014 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1–6. IEEE (2014)

    Google Scholar 

  96. Ahmed, M.: Sliding mode control for switched mode power supplies. Acta Universitatis Lappeenrantaensis (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Fulwani .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Fulwani, D.K., Singh, S. (2017). Introduction. In: Mitigation of Negative Impedance Instabilities in DC Distribution Systems. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2071-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2071-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2070-4

  • Online ISBN: 978-981-10-2071-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics