Skip to main content

Impact of Climatic and Land Use Changes on River Flows in the Southern Alps

  • Chapter
  • First Online:
Sustainable Water Resources Planning and Management Under Climate Change

Abstract

River flow time series are far from being stationary and always experienced changes in the past, also dramatic in long time horizons. In recent years it seems that both climatic and anthropogenic factors are accelerating the variability of hydrological processes. It is not clear, however, whether climatic or anthropic factors represent the major forcing to the hydrological cycle. Long-term statistics, lasting over 150 years, of annual runoff for the five major Italian rivers in the Central Alps are presented and compared with precipitation, temperature and land use changes. A homogeneous decreasing trend of annual runoff is observed, and the significance of such a trend at the local and regional scale is tested with Mann-Kendall, Sen-Theil and Sen-Adichie statistical tests. It is shown that for some rivers, the increased agricultural water demand and land use changes are a likely major source of non-stationarity, possibly more relevant than meteorological ones. A natural feedback which is being observed also at the global scale is discussed on the basis of land use in the Adige river basin by comparing cadastral maps of the mid-nineteenth century with recent aerial photographs in four sample areas. Results are consistent with the reduced speed of deforestation observed at the global scale and the natural afforestation observed in Europe occurring over the last decades. This process can play a major role in regulating the hydrological cycle and mitigating flood and drought extremes, but also enhancing evapotranspiration losses and thus reducing runoff volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adichie JN (1976) Testing parallelism of regression lines against ordered alternatives. Commun Stat Theory Methods 5(11):985–997

    Article  Google Scholar 

  • Adichie JN (1984) Rank tests in linear model. In: Krishnaiah PR, Sen PK (eds) Handbook of statistics 4: nonparametric methods. North Holland, Amsterdam, pp 229–257

    Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schoener W, Ungersboeck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Mueller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi:10.1002/joc.1377

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper VI of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva

    Google Scholar 

  • Blöschl G, Montanari A (2010) Climate change impacts: throwing the dice? Hydrol Process 24(3):374–381, 6693. doi: 10.1002/hyp.7574

  • Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Böhm R, Schöner W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int J Climatol 29(15):2197–2225. doi:10.1002/joc.1857

    Article  Google Scholar 

  • FAO (2011) State of the world’s forests, 2011. Food and Agriculture Organization of the United Nations, Rome (available at http://www.fao.org/docrep/013/i2000e/i2000e00.htm)

    Google Scholar 

  • FAO (2015) Global forest resources assessment 2015: how are the world’s forests changing? Food and Agriculture Organization of the United Nations, Rome (available at http://www.fao.org/3/a-i4793e.pdf)

    Google Scholar 

  • Gerhard LC (2006) Climate change: conflict of observational science, theory, and politics: reply. AAPG Bull 90(3):409–412. doi:10.1306/11030505107

    Article  Google Scholar 

  • Hollander M, Wolfe DA, Chicken E (2014) Nonparametric statistical methods, 3rd edn. Wiley & Sons, New York

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, 1535 pp

    Google Scholar 

  • Kendall MG (1970) Rank correlation methods, 4th edn. Griffin, London

    Google Scholar 

  • Koutsoyiannis D, Efstratiadis A, Mamassis N, Christofides A (2008) On the credibility of climate predictions. Hydrol Sci J 53(4):671–684. doi:10.1623/hysj.53.4.671

    Article  Google Scholar 

  • Kumar S, Merwade V, Kam J, Thurner K (2009) Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. J Hydrol 374:171–183. doi:10.1016/j.jhydrol.2009.06.012

    Article  Google Scholar 

  • Labat D, Godderis Y, Probst J, Guyot J (2004) Evidence for global runoff increase related to climate warming. Adv Water Resour 27(6):631–642. doi:10.1016/j.advwatres.2004.02.020

    Article  Google Scholar 

  • Legates DR, Lins HF, McCabe GJ (2005) Comments on “Evidence for global runoff increase related to climate warming”. Adv Water Resour 28:1310–1315. doi:10.1016/j.advwatres.2005.04.006

    Article  Google Scholar 

  • Liu D, Chen X, Lian Y, Liu Z (2010) Impacts of climate change and human activities on surface runoff in the Dongjiang River basin of China. Hydrol Process 24:1487–1495. doi:10.1002/hyp.7609

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259

    Article  Google Scholar 

  • McCuen RH (2003) Modeling hydrologic change. Lewis Publishers, Boca Raton

    Google Scholar 

  • Moisello U, Vullo F (2009) I massimi di portata dell’Adda a Lecco. L’Acqua 6:9–27

    Google Scholar 

  • Montanari A, Young G, Savenije HHG, Hughes D, Wagener T, Ren LL, Koutsoyiannis D, Cudennec C, Toth E, Grimaldi S, Blöschl G, Sivapalan M, Beven K, Gupta H, Hipsey M, Schaefli B, Arheimer B, Boegh E, Schymanski SJ, Di Baldassarre G, Yu B, Hubert P, Huang Y, Schumann A, Post DA, Srinivasan V, Harman C, Thompson S, Rogger M, Viglione A, McMillan H, Characklis G, Pang Z, Belyaev V (2013) “Panta Rhei–Everything Flows”: change in hydrology and society–The IAHS Scientific Decade 2013–2022. Hydrol Sci J 58(6):1256–1275. doi:10.1080/02626667.2013.809088

    Article  Google Scholar 

  • Ranzi R (2012) Climate and anthropogenic change impact on the hydrological cycle, water management and engineering. In: Proceedings of 4th International Conference on Estuaries and Coasts, Hanoi, 8–11 October 2012, Science and Technics Publishing House, Hanoi (Vietnam), vol 2, pp. 439–446

    Google Scholar 

  • Ranzi R, Barontini S (2010) Are there evidences of the impacts of global warming on runoff regimes in the Southern Alps. In: Proceedings of the international workshop on impacts of global warming from hydrological and hydraulics issues, Kyoto, 16 March 2010, pp 1–6

    Google Scholar 

  • Ranzi R, Bochicchio M, Bacchi B (2002) Effects on floods of recent afforestation and urbanisation in the Mella River (Italian Alps). Hydrol Earth Syst Sci 6(2):239–253

    Article  Google Scholar 

  • Ranzi R, Nalder G, Abdalla AA, Ball J, De Costa GS, Galvão C, Jia Y, Kim YO, Kolokytha E, Lee SI, Nakakita E, Nguyen VTV, Paquier A, Patel PL, Peviani MA, Teegavarapu R (2015) Summary of recommendations for policymakers on adaption to climate change in water engineering. Hydrolink 3:93–95

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Sen PK (1969) On a class of rank order tests for the parallelism of several regression lines. Ann Math Stat 40(5):1668–1683

    Article  Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101

    Article  Google Scholar 

  • Theil H (1950a) A rank-invariant method of linear and polynomial regression analysis, I. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series A 53:386–392

    Google Scholar 

  • Theil H (1950b) A rank-invariant method of linear and polynomial regression analysis, II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series A 53:521–525

    Google Scholar 

  • Theil H (1950c) A rank-invariant method of linear and polynomial regression analysis, III. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series A 53:1397–1412

    Google Scholar 

  • UNFCCC-United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf, 32 pp

  • Wilcox RR (2010) Fundamentals of modern statistical methods, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259(1–4):254–271. doi:10.1016/S0022-1694(01)00594-7

    Article  Google Scholar 

  • Zhang C, Zhang B, Li W, Liu M (2014) Response of streamflow to climate change and human activity in Xiaoxi river basin in China. Hydrol Process 28:43–50. doi:10.1002/hyp.9539

    Article  CAS  Google Scholar 

  • Zolezzi G, Bellin A, Bruno MC, Maiolini B, Siviglia A (2009) Assessing hydrological alterations at multiple temporal scales: Adige River, Italy. Water Resour Res 45(12): W12421-1-W12421-15. doi: 10.1029/2008WR007266

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ranzi .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix A: Estimation of the Regression Line

According to Theil-Sen estimator (Theil 1950a, b, c; Sen 1968; Hollander et al. 2014), trend slope can be computed as

$$ \widehat{\beta}= median\left({S}_{ij},1\le i<j\le n\right), $$
(A.1)

where S ij denote the N = n(n-1) individual slopes between values Y i and Y j of the series, corresponding to time positions x i and x j :

$$ {S}_{ij}=\frac{Y_j-{Y}_i}{x_j-{x}_i}. $$
(A.2)

To calculate (A.1) the sample slopes S ij are ranked in ascending order S (1) ≤ … ≤ S (N); then

$$ \widehat{\beta}={S}^{\left(k+1\right)},\kern1em N\ \mathrm{odd}\kern1em \left(N=2k+1\right) $$
(A.3)
$$ \widehat{\beta}=\frac{S^{(k)}+{S}^{\left(k+1\right)}}{2},\kern1em N\ \mathrm{even}\kern1em \left(N=2k\right). $$
(A.4)

Accordingly, the intercept of the regression line can be estimated as (Hollander et al. 2014)

$$ \widehat{\alpha}= median\;\left({A}_1,\dots, {A}_n\right),\kern1em {A}_i={Y}_i-\widehat{\beta}{x}_i. $$
(A.5)

In this way, if A (1) ≤ … ≤ A (n) denote the ordered A i values,

$$ \widehat{\alpha}={A}^{\left(k+1\right)},\kern1em n\ \mathrm{odd}\kern1em \left(n=2k+1\right) $$
(A.6)
$$ \widehat{\alpha}=\frac{A^{(k)}+{A}^{\left(k+1\right)}}{2},\kern1em n\ \mathrm{even}\kern1em \left(n=2k\right). $$
(A.7)

1.2 Appendix B: Confidence Interval for the Trend Slope

A symmetric two-sided confidence interval for the trend slope can be obtained in terms of the upper (α/2)th percentile k α/2 of the null distribution of the Kendall statistic (Hollander et al. 2014):

$$ C={\displaystyle \sum_{i=1}^{n-1}{\displaystyle \sum_{j=1+1}^n sign}}\left({D}_j-{D}_i\right),\kern1em {D}_s={Y}_s-\widehat{\beta}{x}_s. $$
(B.1)

Setting Cα = k α/2–2 and

$$ M=\frac{N-{C}_{\alpha }}{2},\kern1em Q=\frac{N+{C}_{\alpha }}{2}=M+{C}_{\alpha}\kern1em \mathrm{with}\kern0.5em N=\frac{n\left(n-1\right)}{2} $$
(B.2)

the (1–α) confidence interval (β L , β U ) is given by

$$ {\beta}_L={S}^{(M)},\kern1em {\beta}_U={S}^{\left(Q+1\right)} $$
(B.3)

according to the notation of Appendix A.

For large n, the following approximation can be used:

$$ {C}_{\alpha}\approx {z}_{\alpha /2}{\left[\frac{n\left(n-1\right)\left(2n+5\right)}{18}\right]}^{1/2}, $$
(B.4)

where z α/2 denotes the upper (α/2)th percentile of the standard normal distribution. In general, Eq. (B.4) provides a noninteger value; in this case the integer part of the right-hand side can be used.

1.3 Appendix C: Test for the Parallelism of Several Regression Lines

The null hypothesis H 0 is that k regression lines have a common, but unspecified slope β:

$$ {H}_0:\kern1em \left[{\beta}_1=\dots ={\beta}_k=\beta, \kern1em \mathrm{with}\ \beta\ \mathrm{unspecified}\right]. $$
(C.1)

The first step is to obtain an estimate of the common slope β under the null hypothesis (C.1); to this purpose, the following pooled least squares estimator is used:

$$ \overline{\beta}=\frac{{\displaystyle \sum_{i=1}^k{\displaystyle \sum_{j=1}^{n_i}\left({x}_{ij}-{\overline{x}}_i\right)}}{Y}_{ij}}{{\displaystyle \sum_{i=1}^k{\displaystyle \sum_{j=1}^{n_i}{\left({x}_{ij}-{\overline{x}}_i\right)}^2}}},\kern1em {\overline{x}}_i=\frac{1}{n_i}{\displaystyle \sum_{j=1}^{n_i}{x}_{ij}}, $$
(C.2)

where Y ij is the value of the i-th response variable Y i corresponding to the value x ij and the ith independent variable x i (for i = 1,…, k).

Then for each of the k regression lines, the aligned observations can be computed as

$$ {Y}_{ij}^{*}={Y}_{ij}-\overline{\beta}{x}_{ij}\kern1em i=1,\dots, k;\kern1em j=1,\dots, {n}_i, $$
(C.3)

whose rank in the ith regression sample is denoted by r * ij .

Setting

$$ {T}_i^{*}=\frac{{\displaystyle \sum_{j=1}^{n_i}\left({x}_{ij}-{\overline{x}}_i\right)}{r}_{ij}^{*}}{n_i+1};\kern1em i=1,\dots, k $$
(C.4)

and

$$ {C}_i^2={\displaystyle \sum_{j=1}^{n_i}{\left({x}_{ij}-{\overline{x}}_i\right)}^2};\kern1em i=1,\dots, k, $$
(C.5)

the Sen-Adichie statistic V is given by

$$ V=12{{\displaystyle \sum_{i=1}^k\left[\frac{T_i^{*}}{C_i}\right]}}^2. $$
(C.6)

Under the null hypothesis (C.1), V is asymptotically distributed as a chi-square with k–1 Degrees of freedom (Sen 1969). This implies that hypothesis (C.1) versus the alternative

$$ {H}_1:\kern1em \left[{\beta}_1,\dots, {\beta}_k\kern0.75em not\ all\ equal\right] $$
(C.7)

has to be rejected at the level of significance α if

$$ V\ge {\chi}_{k-1,\kern0.1em \alpha}^2 $$
(C.8)

where χ2 k-1,α is the upper αth percentile of a chi-square distribution with k–1 degrees of freedom (Adichie 1976, 1984; Hollander et al. 2014).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ranzi, R., Caronna, P., Tomirotti, M. (2017). Impact of Climatic and Land Use Changes on River Flows in the Southern Alps. In: Kolokytha, E., Oishi, S., Teegavarapu, R. (eds) Sustainable Water Resources Planning and Management Under Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-10-2051-3_3

Download citation

Publish with us

Policies and ethics