Advertisement

Cystogenesis pp 85-103 | Cite as

Diagnostic Evaluation as a Biomarker in Patients with ADPKD

  • Hayne Cho ParkEmail author
  • Curie Ahn
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 933)

Abstract

Recently, newer treatments have been introduced for autosomal dominant polycystic kidney disease (ADPKD) patients. Since cysts grow and renal function declines over a long period of time, the evaluation of treatment effects in ADPKD has been very difficult. Therefore, there has been a great interest to find out the “better” surrogate marker or biomarker which reflects disease progression. Biomarkers in ADPKD should have three clinical implications: (1) They should reflect disease severity, (2) they should distinguish patients with poor versus good prognosis to select those who will benefit better from the treatment, and (3) they should be easy to evaluate short-term outcome after treatment, which will demonstrate hard outcome. Herein, we will discuss currently available surrogate biomarkers including the volume of total kidney and urinary molecular markers.

Keywords

Polycystic kidney, autosomal dominant Biological markers Patient selection Prognosis Treatment outcome 

References

  1. Bae KT, Grantham JJ (2010) Imaging for the prognosis of autosomal dominant polycystic kidney disease. Nat Rev Nephrol 6(2):96–106. doi: 10.1038/nrneph.2009.214 CrossRefPubMedGoogle Scholar
  2. Barua M, Cil O, Paterson AD, Wang K, He N, Dicks E, Parfrey P, Pei Y (2009) Family history of renal disease severity predicts the mutated gene in ADPKD. J Am Soc Nephrol JASN 20(8):1833–1838. doi: 10.1681/ASN.2009020162 CrossRefPubMedGoogle Scholar
  3. Ben-Dov IZ, Tan YC, Morozov P, Wilson PD, Rennert H, Blumenfeld JD, Tuschl T (2014) Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline. PLoS One 9(1):e86856. doi: 10.1371/journal.pone.0086856 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bergmann C, von Bothmer J, Ortiz Bruchle N, Venghaus A, Frank V, Fehrenbach H, Hampel T, Pape L, Buske A, Jonsson J, Sarioglu N, Santos A, Ferreira JC, Becker JU, Cremer R, Hoefele J, Benz MR, Weber LT, Buettner R, Zerres K (2011) Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol JASN 22(11):2047–2056. doi: 10.1681/ASN.2010101080 CrossRefPubMedGoogle Scholar
  5. Boertien WE, Meijer E, Zittema D, van Dijk MA, Rabelink TJ, Breuning MH, Struck J, Bakker SJ, Peters DJ, de Jong PE, Gansevoort RT (2012) Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 27(11):4131–4137. doi: 10.1093/ndt/gfs070 CrossRefPubMedGoogle Scholar
  6. Boertien WE, Meijer E, Li J, Bost JE, Struck J, Flessner MF, Gansevoort RT, Torres VE, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease C (2013) Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. Am J Kidney Dis Off J Nat Kidney Found 61(3):420–429. doi: 10.1053/j.ajkd.2012.08.038 CrossRefGoogle Scholar
  7. Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, Li J, King BF, Martin D, Wetzel LH, Lockhart ME, Harris PC, Moxey-Mims M, Flessner M, Bennett WM, Grantham JJ (2012) Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 7(3):479–486. doi: 10.2215/CJN.09500911 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chapman AB, Devuyst O, Eckardt KU, Gansevoort RT, Harris T, Horie S, Kasiske BL, Odland D, Pei Y, Perrone RD, Pirson Y, Schrier RW, Torra R, Torres VE, Watnick T, Wheeler DC, Conference P (2015) Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int 88(1):17–27. doi: 10.1038/ki.2015.59 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cornec-Le Gall E, Audrezet MP, Chen JM, Hourmant M, Morin MP, Perrichot R, Charasse C, Whebe B, Renaudineau E, Jousset P, Guillodo MP, Grall-Jezequel A, Saliou P, Ferec C, Le Meur Y (2013) Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol JASN 24(6):1006–1013. doi: 10.1681/ASN.2012070650 CrossRefPubMedGoogle Scholar
  10. Fick-Brosnahan GM, Tran ZV, Johnson AM, Strain JD, Gabow PA (2001) Progression of autosomal-dominant polycystic kidney disease in children. Kidney Int 59(5):1654–1662. doi: 10.1046/j.1523-1755.2001.0590051654.x CrossRefPubMedGoogle Scholar
  11. Gabow PA, Duley I, Johnson AM (1992a) Clinical profiles of gross hematuria in autosomal dominant polycystic kidney disease. Am J Kidney Dis Off J Nat Kidney Found 20(2):140–143CrossRefGoogle Scholar
  12. Gabow PA, Johnson AM, Kaehny WD, Kimberling WJ, Lezotte DC, Duley IT, Jones RH (1992b) Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int 41(5):1311–1319CrossRefPubMedGoogle Scholar
  13. Gansevoort RT, Arici M, Benzing T, Birn H, Capasso G, Covic A, Devuyst O, Drechsler C, Eckardt KU, Emma F, Knebelmann B, Le Meur Y, Massy ZA, Ong AC, Ortiz A, Schaefer F, Torra R, Vanholder R, Wiecek A, Zoccali C, Van Biesen W (2016) Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA working groups on inherited kidney disorders and European renal best practice. Nephrol Dial Transplant 31(3):337–348. doi: 10.1093/ndt/gfv456 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Geberth S, Stier E, Zeier M, Mayer G, Rambausek M, Ritz E (1995) More adverse renal prognosis of autosomal dominant polycystic kidney disease in families with primary hypertension. J Am Soc Nephrol JASN 6(6):1643–1648PubMedGoogle Scholar
  15. Harris PC, Bae KT, Rossetti S, Torres VE, Grantham JJ, Chapman AB, Guay-Woodford LM, King BF, Wetzel LH, Baumgarten DA, Kenney PJ, Consugar M, Klahr S, Bennett WM, Meyers CM, Zhang QJ, Thompson PA, Zhu F, Miller JP (2006) Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol JASN 17(11):3013–3019. doi: 10.1681/ASN.2006080835 CrossRefPubMedGoogle Scholar
  16. Hateboer N, v Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353(9147):103–107CrossRefPubMedGoogle Scholar
  17. Helal I, McFann K, Reed B, Yan XD, Schrier RW, Fick-Brosnahan GM (2013) Serum uric acid, kidney volume and progression in autosomal-dominant polycystic kidney disease. Nephrol Dial Transplant 28(2):380–385. doi: 10.1093/ndt/gfs417 CrossRefPubMedGoogle Scholar
  18. Huang S, Chen L, Lu L, Li L (2016) The apelin-APJ axis: a novel potential therapeutic target for organ fibrosis. Clin Chim Acta 456:81–88. doi: 10.1016/j.cca.2016.02.025 CrossRefPubMedGoogle Scholar
  19. Hwang JH, Park HC, Jeong JC, Ha Baek S, Han MY, Bang K, Cho JY, Yu SH, Yang J, Oh KH, Hwang YH, Ahn C (2013) Chronic asymptomatic pyuria precedes overt urinary tract infection and deterioration of renal function in autosomal dominant polycystic kidney disease. BMC Nephrol 14:1. doi: 10.1186/1471-2369-14-1 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hwang YH, Conklin J, Chan W, Roslin NM, Liu J, He N, Wang K, Sundsbak JL, Heyer CM, Haider M, Paterson AD, Harris PC, Pei Y (2015) Refining genotype-phenotype correlation in autosomal dominant polycystic kidney disease. J Am Soc Nephrol JASN. doi: 10.1681/ASN.2015060648 Google Scholar
  21. Idrizi A, Barbullushi M, Petrela E, Kodra S, Koroshi A, Thereska N (2009) The influence of renal manifestations to the progression of autosomal dominant polycystic kidney disease. Hippokratia 13(3):161–164PubMedPubMedCentralGoogle Scholar
  22. Idrizi A, Barbullushi M, Koroshi A, Dibra M, Bolleku E, Bajrami V, Xhaferri X, Thereska N (2011) Urinary tract infections in polycystic kidney disease. Med Arh 65(4):213–215CrossRefPubMedGoogle Scholar
  23. Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, Bae KT, Chapman AB, Grantham JJ, Mrug M, Hogan MC, El-Zoghby ZM, Harris PC, Erickson BJ, King BF, Torres VE, Investigators C (2015) Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol JASN 26(1):160–172. doi: 10.1681/ASN.2013101138 CrossRefPubMedGoogle Scholar
  24. Johnson AM, Gabow PA (1997) Identification of patients with autosomal dominant polycystic kidney disease at highest risk for end-stage renal disease. J Am Soc Nephrol JASN 8(10):1560–1567PubMedGoogle Scholar
  25. Kistler AD, Mischak H, Poster D, Dakna M, Wuthrich RP, Serra AL (2009a) Identification of a unique urinary biomarker profile in patients with autosomal dominant polycystic kidney disease. Kidney Int 76(1):89–96. doi: 10.1038/ki.2009.93 CrossRefPubMedGoogle Scholar
  26. Kistler AD, Poster D, Krauer F, Weishaupt D, Raina S, Senn O, Binet I, Spanaus K, Wuthrich RP, Serra AL (2009b) Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months. Kidney Int 75(2):235–241. doi: 10.1038/ki.2008.558 CrossRefPubMedGoogle Scholar
  27. Kistler AD, Serra AL, Siwy J, Poster D, Krauer F, Torres VE, Mrug M, Grantham JJ, Bae KT, Bost JE, Mullen W, Wuthrich RP, Mischak H, Chapman AB (2013) Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study. PLoS One 8(1):e53016. doi: 10.1371/journal.pone.0053016 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Klahr S, Breyer JA, Beck GJ, Dennis VW, Hartman JA, Roth D, Steinman TI, Wang SR, Yamamoto ME (1995) Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of Diet in Renal Disease Study Group. J Am Soc Nephrol JASN 5(12):2037–2047PubMedGoogle Scholar
  29. Kobori H, Alper AB Jr, Shenava R, Katsurada A, Saito T, Ohashi N, Urushihara M, Miyata K, Satou R, Hamm LL, Navar LG (2009) Urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertensive patients. Hypertension 53(2):344–350. doi: 10.1161/HYPERTENSIONAHA.108.123802 CrossRefPubMedGoogle Scholar
  30. Kocer D, Karakukcu C, Ozturk F, Eroglu E, Kocyigit I (2016) Evaluation of fibrosis markers: apelin and transforming growth factor-beta1 in autosomal dominant polycystic kidney disease patients. The Apher Dial Off Peer-reviewed J Int Soc Apher Jpn Soc Apher Jpn Soc Dial Ther. doi: 10.1111/1744-9987.12412 Google Scholar
  31. Kocyigit I, Yilmaz MI, Orscelik O, Sipahioglu MH, Unal A, Eroglu E, Kalay N, Tokgoz B, Axelsson J, Oymak O (2013) Serum uric acid levels and endothelial dysfunction in patients with autosomal dominant polycystic kidney disease. Nephron Clin Pract 123(3–4):157–164. doi: 10.1159/000353730 CrossRefPubMedGoogle Scholar
  32. Lacquaniti A, Chirico V, Lupica R, Buemi A, Loddo S, Caccamo C, Salis P, Bertani T, Buemi M (2013) Apelin and copeptin: two opposite biomarkers associated with kidney function decline and cyst growth in autosomal dominant polycystic kidney disease. Peptides 49:1–8. doi: 10.1016/j.peptides.2013.08.007 CrossRefPubMedGoogle Scholar
  33. Lakhia R, Hajarnis S, Williams D, Aboudehen K, Yheskel M, Xing C, Hatley ME, Torres VE, Wallace DP, Patel V (2015) MicroRNA-21 aggravates cyst growth in a model of polycystic kidney disease. J Am Soc Nephrol JASN. doi: 10.1681/ASN.2015060634 PubMedGoogle Scholar
  34. Li X (2011) Epigenetics and autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1812(10):1213–1218. doi: 10.1016/j.bbadis.2010.10.008 CrossRefPubMedGoogle Scholar
  35. Liu M, Shi S, Senthilnathan S, Yu J, Wu E, Bergmann C, Zerres K, Bogdanova N, Coto E, Deltas C, Pierides A, Demetriou K, Devuyst O, Gitomer B, Laakso M, Lumiaho A, Lamnissou K, Magistroni R, Parfrey P, Breuning M, Peters DJ, Torra R, Winearls CG, Torres VE, Harris PC, Paterson AD, Pei Y (2010) Genetic variation of DKK3 may modify renal disease severity in ADPKD. J Am Soc Nephrol JASN 21(9):1510–1520. doi: 10.1681/ASN.2010030237 CrossRefPubMedGoogle Scholar
  36. Meijer E, Boertien WE, Nauta FL, Bakker SJ, van Oeveren W, Rook M, van der Jagt EJ, van Goor H, Peters DJ, Navis G, de Jong PE, Gansevoort RT (2010) Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am J Kidney Dis Off J Nat Kidney Found 56(5):883–895. doi: 10.1053/j.ajkd.2010.06.023 CrossRefGoogle Scholar
  37. Meijer E, Bakker SJ, van der Jagt EJ, Navis G, de Jong PE, Struck J, Gansevoort RT (2011) Copeptin, a surrogate marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 6(2):361–368. doi: 10.2215/CJN.04560510 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nakajima A, Lu Y, Kawano H, Horie S, Muto S (2015) Association of arginine vasopressin surrogate marker urinary copeptin with severity of autosomal dominant polycystic kidney disease (ADPKD). Clin Exp Nephrol 19(6):1199–1205. doi: 10.1007/s10157-015-1101-7 CrossRefPubMedGoogle Scholar
  39. Norman J (2011) Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta 1812(10):1327–1336. doi: 10.1016/j.bbadis.2011.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Orskov B, Borresen ML, Feldt-Rasmussen B, Ostergaard O, Laursen I, Strandgaard S (2010) Estimating glomerular filtration rate using the new CKD-EPI equation and other equations in patients with autosomal dominant polycystic kidney disease. Am J Nephrol 31(1):53–57. doi: 10.1159/000256657 CrossRefPubMedGoogle Scholar
  41. Ozkok A, Akpinar TS, Tufan F, Kanitez NA, Uysal M, Guzel M, Caliskan Y, Alisir S, Yazici H, Ecder T (2013) Clinical characteristics and predictors of progression of chronic kidney disease in autosomal dominant polycystic kidney disease: a single center experience. Clin Exp Nephrol 17(3):345–351. doi: 10.1007/s10157-012-0706-3 CrossRefPubMedGoogle Scholar
  42. Parikh CR, Dahl NK, Chapman AB, Bost JE, Edelstein CL, Comer DM, Zeltner R, Tian X, Grantham JJ, Somlo S (2012) Evaluation of urine biomarkers of kidney injury in polycystic kidney disease. Kidney Int 81(8):784–790. doi: 10.1038/ki.2011.465 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Park EY, Woo YM, Park JH (2011) Polycystic kidney disease and therapeutic approaches. BMB Rep 44(6):359–368. doi: 10.5483/BMBRep.2011.44.6.359 CrossRefPubMedGoogle Scholar
  44. Park HC, Hwang JH, Kang AY, Ro H, Kim MG, An JN, In Park J, Kim SH, Yang J, Oh YK, Oh KH, Noh JW, Cheong HI, Hwang YH, Ahn C (2012) Urinary N-acetyl-beta-D glucosaminidase as a surrogate marker for renal function in autosomal dominant polycystic kidney disease: 1 year prospective cohort study. BMC Nephrol 13:93. doi: 10.1186/1471-2369-13-93 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Park HC, Kang AY, Jang JY, Kim H, Han M, Oh KH, Kim SH, Noh JW, Cheong HI, Hwang YH, Ahn C (2015) Increased urinary Angiotensinogen/Creatinine (AGT/Cr) ratio may be associated with reduced renal function in autosomal dominant polycystic kidney disease patients. BMC Nephrol 16:86. doi: 10.1186/s12882-015-0075-8 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Paterson AD, Pei Y (1998) Is there a third gene for autosomal dominant polycystic kidney disease? Kidney Int 54(5):1759–1761. doi: 10.1046/j.1523-1755.1998.00166.x CrossRefPubMedGoogle Scholar
  47. Paul BM, Consugar MB, Ryan Lee M, Sundsbak JL, Heyer CM, Rossetti S, Kubly VJ, Hopp K, Torres VE, Coto E, Clementi M, Bogdanova N, de Almeida E, Bichet DG, Harris PC (2014) Evidence of a third ADPKD locus is not supported by re-analysis of designated PKD3 families. Kidney Int 85(2):383–392. doi: 10.1038/ki.2013.227 CrossRefPubMedGoogle Scholar
  48. Pei Y, Lan Z, Wang K, Garcia-Gonzalez M, He N, Dicks E, Parfrey P, Germino G, Watnick T (2012) A missense mutation in PKD1 attenuates the severity of renal disease. Kidney Int 81(4):412–417. doi: 10.1038/ki.2011.370 CrossRefPubMedGoogle Scholar
  49. Perez-Oller L, Torra R, Badenas C, Mila M, Darnell A (1999) Influence of the ACE gene polymorphism in the progression of renal failure in autosomal dominant polycystic kidney disease. Am J Kidney Dis Off J Nat Kidney Found 34(2):273–278. doi: 10.1053/AJKD03400273 CrossRefGoogle Scholar
  50. Persu A, Stoenoiu MS, Messiaen T, Davila S, Robino C, El-Khattabi O, Mourad M, Horie S, Feron O, Balligand JL, Wattiez R, Pirson Y, Chauveau D, Lens XM, Devuyst O (2002) Modifier effect of ENOS in autosomal dominant polycystic kidney disease. Hum Mol Genet 11(3):229–241CrossRefPubMedGoogle Scholar
  51. Romaker D, Puetz M, Teschner S, Donauer J, Geyer M, Gerke P, Rumberger B, Dworniczak B, Pennekamp P, Buchholz B, Neumann HP, Kumar R, Gloy J, Eckardt KU, Walz G (2009) Increased expression of secreted frizzled-related protein 4 in polycystic kidneys. J Am Soc Nephrol JASN 20(1):48–56. doi: 10.1681/ASN.2008040345 CrossRefPubMedGoogle Scholar
  52. Rossetti S, Kubly VJ, Consugar MB, Hopp K, Roy S, Horsley SW, Chauveau D, Rees L, Barratt TM, van’t Hoff WG, Niaudet P, Torres VE, Harris PC (2009) Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int 75(8):848–855. doi: 10.1038/ki.2008.686 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ruggenenti P, Gaspari F, Cannata A, Carrara F, Cella C, Ferrari S, Stucchi N, Prandini S, Ene-Iordache B, Diadei O, Perico N, Ondei P, Pisani A, Buongiorno E, Messa P, Dugo M, Remuzzi G, Group G-AS (2012) Measuring and estimating GFR and treatment effect in ADPKD patients: results and implications of a longitudinal cohort study. PLoS One 7(2):e32533. doi: 10.1371/journal.pone.0032533 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rule AD, Torres VE, Chapman AB, Grantham JJ, Guay-Woodford LM, Bae KT, Klahr S, Bennett WM, Meyers CM, Thompson PA, Miller JP, Consortium C (2006) Comparison of methods for determining renal function decline in early autosomal dominant polycystic kidney disease: the consortium of radiologic imaging studies of polycystic kidney disease cohort. J Am Soc Nephrol JASN 17(3):854–862. doi: 10.1681/ASN.2005070697 CrossRefPubMedGoogle Scholar
  55. Salih M, Demmers JA, Bezstarosti K, Leonhard WN, Losekoot M, van Kooten C, Gansevoort RT, Peters DJ, Zietse R, Hoorn EJ, Consortium D (2016) Proteomics of urinary vesicles links plakins and complement to polycystic kidney disease. J Am Soc Nephrol JASN. doi: 10.1681/ASN.2015090994 PubMedGoogle Scholar
  56. Schrier RW (2011) Hypertension and autosomal dominant polycystic kidney disease. Am J Kidney Dis Off J Nat Kidney Found 57(6):811–813. doi: 10.1053/j.ajkd.2011.02.379 CrossRefGoogle Scholar
  57. Schrier RW, Johnson AM, McFann K, Chapman AB (2003) The role of parental hypertension in the frequency and age of diagnosis of hypertension in offspring with autosomal-dominant polycystic kidney disease. Kidney Int 64(5):1792–1799. doi: 10.1046/j.1523-1755.2003.00264.x CrossRefPubMedGoogle Scholar
  58. Schrier RW, Abebe KZ, Perrone RD, Torres VE, Braun WE, Steinman TI, Winklhofer FT, Brosnahan G, Czarnecki PG, Hogan MC, Miskulin DC, Rahbari-Oskoui FF, Grantham JJ, Harris PC, Flessner MF, Bae KT, Moore CG, Chapman AB, Investigators H-PT (2014) Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med 371(24):2255–2266. doi: 10.1056/NEJMoa1402685 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Shamshirsaz AA, Reza Bekheirnia M, Kamgar M, Johnson AM, McFann K, Cadnapaphornchai M, Nobakhthaghighi N, Schrier RW (2005) Autosomal-dominant polycystic kidney disease in infancy and childhood: progression and outcome. Kidney Int 68(5):2218–2224. doi: 10.1111/j.1523-1755.2005.00678.x CrossRefPubMedGoogle Scholar
  60. Spithoven EM, van Gastel MD, Messchendorp AL, Casteleijn NF, Drenth JP, Gaillard CA, de Fijter JW, Meijer E, Peters DJ, Kappert P, Renken RJ, Visser FW, Wetzels JF, Zietse R, Gansevoort RT, Consortium D (2015) Estimation of total kidney volume in autosomal dominant polycystic kidney disease. Am J Kidney Dis Off J Nat Kidney Found 66(5):792–801. doi: 10.1053/j.ajkd.2015.06.017 CrossRefGoogle Scholar
  61. Spithoven EM, Meijer E, Boertien WE, Sinkeler SJ, Tent H, de Jong PE, Navis G, Gansevoort RT (2013) Tubular secretion of creatinine in autosomal dominant polycystic kidney disease: consequences for cross-sectional and longitudinal performance of kidney function estimating equations. Am J Kidney Dis Off J Nat Kidney Found 62(3):531–540. doi: 10.1053/j.ajkd.2013.03.030 CrossRefGoogle Scholar
  62. Sun L, Zhu J, Wu M, Sun H, Zhou C, Fu L, Xu C, Mei C (2015) Inhibition of MiR-199a-5p reduced cell proliferation in autosomal dominant polycystic kidney disease through targeting CDKN1C. Med Sci Mon Int Med J Exp Clin Res 21:195–200. doi:10.12659/MSM.892141Google Scholar
  63. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369(9569):1287–1301. doi: 10.1016/S0140-6736(07)60601-1 CrossRefPubMedGoogle Scholar
  64. Tracz MJ, Alam J, Nath KA (2007) Physiology and pathophysiology of heme: implications for kidney disease. J Am Soc Nephrol JASN 18(2):414–420. doi: 10.1681/ASN.2006080894 CrossRefPubMedGoogle Scholar
  65. Wang D, Strandgaard S, Borresen ML, Luo Z, Connors SG, Yan Q, Wilcox CS (2008) Asymmetric dimethylarginine and lipid peroxidation products in early autosomal dominant polycystic kidney disease. Am J Kidney Dis Off J Nat Kidney Found 51(2):184–191. doi: 10.1053/j.ajkd.2007.09.020 CrossRefGoogle Scholar
  66. Woo YM, Park JH (2013) microRNA biomarkers in cystic diseases. BMB Rep 46(7):338–345CrossRefPubMedPubMedCentralGoogle Scholar
  67. Woo YM, Bae JB, Oh YH, Lee YG, Lee MJ, Park EY, Choi JK, Lee S, Shin Y, Lyu J, Jung HY, Lee YS, Hwang YH, Kim YJ, Park JH (2014) Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development. Hum Genet 133(3):281–297. doi: 10.1007/s00439-013-1378-0 CrossRefPubMedGoogle Scholar
  68. Zheng D, Wolfe M, Cowley BD Jr, Wallace DP, Yamaguchi T, Grantham JJ (2003) Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. J Am Soc Nephrol JASN 14(10):2588–2595CrossRefPubMedGoogle Scholar
  69. Zschiedrich S, Budde K, Nurnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Hoerl WH, Obermuller N, Arns W, Pavenstadt H, Gaedeke J, Lindner TH, Faerber L, Wimmer P, Stork R, Eckardt KU, Walz G (2016) Secreted frizzled-related protein 4 predicts progression of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 31(2):284–289. doi: 10.1093/ndt/gfv077 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Division of Nephrology, Department of Internal MedicineThe Armed Forces Capital HospitalSeongnam-siSouth Korea
  2. 2.Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations