Validation of Effective Therapeutic Targets for ADPKD Using Animal Models

  • Yu Mi WooEmail author
  • Je Yeong Ko
  • Eun Ji Lee
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 933)


Various polycystic kidney disease (PKD) animal models including Pkd1- or Pkd2-deficient mice have been developed and efficiently utilized to identify novel therapeutic targets as well as elucidate multiple mechanisms of cyst formation in PKD. Based on several successful in vivo studies, preclinical approaches using PKD animal models would shed light on the development of potential therapeutic strategies for PKD. Here, we provide an update on the current evidence obtained by the in vivo evaluation of PKD therapeutic candidates and discuss the effect of therapeutic targets.


PKD Animal model Therapeutic target 


  1. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, Bell PD, Schwiebert EM, Yoder BK (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132(23):5329–5339. doi: 10.1242/dev.02153 CrossRefPubMedGoogle Scholar
  2. Baur BP, Meaney CJ (2014) Review of tolvaptan for autosomal dominant polycystic kidney disease. Pharmacotherapy 34(6):605–616. doi: 10.1002/phar.1421 CrossRefPubMedGoogle Scholar
  3. Boulter C, Mulroy S, Webb S, Fleming S, Brindle K, Sandford R (2001) Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci U S A 98(21):12174–12179. doi: 10.1073/pnas.211191098 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buchholz B, Klanke B, Schley G, Bollag G, Tsai J, Kroening S, Yoshihara D, Wallace DP, Kraenzlin B, Gretz N, Hirth P, Eckardt KU, Bernhardt WM (2011) The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc 26(11):3458–3465. doi: 10.1093/ndt/gfr432 Google Scholar
  5. Bukanov NO, Smith LA, Klinger KW, Ledbetter SR, Ibraghimov-Beskrovnaya O (2006) Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 444(7121):949–952. doi: 10.1038/nature05348 CrossRefPubMedGoogle Scholar
  6. Bukanov NO, Moreno SE, Natoli TA, Rogers KA, Smith LA, Ledbetter SR, Oumata N, Galons H, Meijer L, Ibraghimov-Beskrovnaya O (2012) CDK inhibitors R-roscovitine and S-CR8 effectively block renal and hepatic cystogenesis in an orthologous model of ADPKD. Cell Cycle 11(21):4040–4046. doi: 10.4161/cc.22375 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cadnapaphornchai MA, George DM, McFann K, Wang W, Gitomer B, Strain JD, Schrier RW (2014) Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol CJASN 9(5):889–896. doi: 10.2215/CJN.08350813 CrossRefPubMedGoogle Scholar
  8. Calvet JP (2008) Strategies to inhibit cyst formation in ADPKD. Clin J Am Soc Nephrol CJASN 3(4):1205–1211. doi: 10.2215/CJN.05651207 CrossRefPubMedGoogle Scholar
  9. Cano DA, Murcia NS, Pazour GJ, Hebrok M (2004) Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131(14):3457–3467. doi: 10.1242/dev.01189 CrossRefPubMedGoogle Scholar
  10. Caroli A, Perico N, Perna A, Antiga L, Brambilla P, Pisani A, Visciano B, Imbriaco M, Messa P, Cerutti R, Dugo M, Cancian L, Buongiorno E, De Pascalis A, Gaspari F, Carrara F, Rubis N, Prandini S, Remuzzi A, Remuzzi G, Ruggenenti P, ALADIN study group (2013) Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet 382(9903):1485–1495. doi: 10.1016/S0140-6736(13)61407-5 CrossRefPubMedGoogle Scholar
  11. Chang MY, Ong AC (2012) Mechanism-based therapeutics for autosomal dominant polycystic kidney disease: recent progress and future prospects. Nephron Clin Pract 120(1):c25–c34; discussion c35. doi: 10.1159/000334166 CrossRefPubMedGoogle Scholar
  12. Eguether T, San Agustin JT, Keady BT, Jonassen JA, Liang Y, Francis R, Tobita K, Johnson CA, Abdelhamed ZA, Lo CW, Pazour GJ (2014) IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev Cell 31(3):279–290. doi: 10.1016/j.devcel.2014.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Elliott J, Zheleznova NN, Wilson PD (2011) c-Src inactivation reduces renal epithelial cell-matrix adhesion, proliferation, and cyst formation. Am J Physiol Cell Physiol 301(2):C522–C529. doi: 10.1152/ajpcell.00163.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fassett RG, Coombes JS, Packham D, Fairley KF, Kincaid-Smith P (2010) Effect of pravastatin on kidney function and urinary protein excretion in autosomal dominant polycystic kidney disease. Scand J Urol Nephrol 44(1):56–61. doi: 10.3109/00365590903359908 CrossRefPubMedGoogle Scholar
  15. Gardner KD Jr, Burnside JS, Elzinga LW, Locksley RM (1991) Cytokines in fluids from polycystic kidneys. Kidney Int 39(4):718–724CrossRefPubMedGoogle Scholar
  16. Gattone VH 2nd, Maser RL, Tian C, Rosenberg JM, Branden MG (1999) Developmental expression of urine concentration-associated genes and their altered expression in murine infantile-type polycystic kidney disease. Dev Genet 24(3–4):309–318. doi: 10.1002/(SICI)1520-6408(1999)24:3/4<309::AID-DVG14>3.0.CO;2-5 CrossRefPubMedGoogle Scholar
  17. Gattone VH 2nd, Wang X, Harris PC, Torres VE (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9(10):1323–1326. doi: 10.1038/nm935 CrossRefPubMedGoogle Scholar
  18. Gile RD, Cowley BD Jr, Gattone VH 2nd, O’Donnell MP, Swan SK, Grantham JJ (1995) Effect of lovastatin on the development of polycystic kidney disease in the Han:SPRD rat. Am J Kidney Dis Off J Nat Kidney Found 26(3):501–507CrossRefGoogle Scholar
  19. Hogan MC, Masyuk TV, Page LJ, Kubly VJ, Bergstralh EJ, Li X, Kim B, King BF, Glockner J, Holmes DR 3rd, Rossetti S, Harris PC, LaRusso NF, Torres VE (2010) Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol JASN 21(6):1052–1061. doi: 10.1681/ASN.2009121291 CrossRefPubMedGoogle Scholar
  20. Hogan MC, Masyuk TV, Page L, Holmes DR 3rd, Li X, Bergstralh EJ, Irazabal MV, Kim B, King BF, Glockner JF, Larusso NF, Torres VE (2012) Somatostatin analog therapy for severe polycystic liver disease: results after 2 years. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc 27(9):3532–3539. doi: 10.1093/ndt/gfs152 Google Scholar
  21. Hou X, Mrug M, Yoder BK, Lefkowitz EJ, Kremmidiotis G, D’Eustachio P, Beier DR, Guay-Woodford LM (2002) Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 109(4):533–540. doi: 10.1172/JCI14099 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Irazabal MV, Torres VE, Hogan MC, Glockner J, King BF, Ofstie TG, Krasa HB, Ouyang J, Czerwiec FS (2011) Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease. Kidney Int 80(3):295–301. doi: 10.1038/ki.2011.119 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jonassen JA, San Agustin J, Follit JA, Pazour GJ (2008) Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 183(3):377–384. doi: 10.1083/jcb.200808137 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jonassen JA, SanAgustin J, Baker SP, Pazour GJ (2012) Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J Am Soc Nephrol JASN 23(4):641–651. doi: 10.1681/ASN.2011080829 CrossRefPubMedGoogle Scholar
  25. Keady BT, Samtani R, Tobita K, Tsuchya M, San Agustin JT, Follit JA, Jonassen JA, Subramanian R, Lo CW, Pazour GJ (2012) IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev Cell 22(5):940–951. doi: 10.1016/j.devcel.2012.04.009 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Keith DS, Torres VE, Johnson CM, Holley KE (1994) Effect of sodium chloride, enalapril, and losartan on the development of polycystic kidney disease in Han:SPRD rats. Am J Kidney Dis Off J Nat Kidney Found 24(3):491–498CrossRefGoogle Scholar
  27. Kim I, Ding T, Fu Y, Li C, Cui L, Li A, Lian P, Liang D, Wang DW, Guo C, Ma J, Zhao P, Coffey RJ, Zhan Q, Wu G (2009) Conditional mutation of Pkd2 causes cystogenesis and upregulates beta-catenin. J Am Soc Nephrol JASN 20(12):2556–2569. doi: 10.1681/ASN.2009030271 CrossRefPubMedGoogle Scholar
  28. Klawitter J, Zafar I, Klawitter J, Pennington AT, Klepacki J, Gitomer BY, Schrier RW, Christians U, Edelstein CL (2013) Effects of lovastatin treatment on the metabolic distributions in the Han:SPRD rat model of polycystic kidney disease. BMC Nephrol 14:165. doi: 10.1186/1471-2369-14-165 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ko JY, Park JH (2013) Mouse models of polycystic kidney disease induced by defects of ciliary proteins. BMB Rep 46(2):73–79CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lehman JM, Michaud EJ, Schoeb TR, Aydin-Son Y, Miller M, Yoder BK (2008) The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men. Dev Dynam Off Publ Am Assoc Anat 237(8):1960–1971. doi: 10.1002/dvdy.21515 Google Scholar
  31. Li X (2011) Epigenetics and autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1812(10):1213–1218. doi: 10.1016/j.bbadis.2010.10.008 CrossRefPubMedGoogle Scholar
  32. Liu S, Lu W, Obara T, Kuida S, Lehoczky J, Dewar K, Drummond IA, Beier DR (2002) A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 129(24):5839–5846CrossRefPubMedGoogle Scholar
  33. Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF (2007) Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 132(3):1104–1116. doi: 10.1053/j.gastro.2006.12.039 CrossRefPubMedGoogle Scholar
  34. Meijer E, Drenth JP, D’Agnolo H, Casteleijn NF, de Fijter JW, Gevers TJ, Kappert P, Peters DJ, Salih M, Soonawala D, Spithoven EM, Torres VE, Visser FW, Wetzels JF, Zietse R, Gansevoort RT, Consortium D (2014) Rationale and design of the DIPAK 1 study: a randomized controlled clinical trial assessing the efficacy of lanreotide to halt disease progression in autosomal dominant polycystic kidney disease. Am J Kidney Dis Off J Nat Kidney Found 63(3):446–455. doi: 10.1053/j.ajkd.2013.10.011 CrossRefGoogle Scholar
  35. Miranda N, Miranda F, Rinaldi L, Stratigis S, Capasso G (2013) [Inhibitors of intra-cystic secretion: novel therapies in ADPKD (Autosomal Dominant Polycystic Kidney Disease)]. Giornale italiano di nefrologia : organo ufficiale della Societa italiana di nefrologia 30 (1)Google Scholar
  36. Muto S, Kawano H, Higashihara E, Narita I, Ubara Y, Matsuzaki T, Ouyang J, Torres VE, Horie S (2015) The effect of tolvaptan on autosomal dominant polycystic kidney disease patients: a subgroup analysis of the Japanese patient subset from TEMPO 3:4 trial. Clin Exp Nephrol 19(5):867–877. doi: 10.1007/s10157-015-1086-2 CrossRefPubMedGoogle Scholar
  37. Nagao S, Yamaguchi T, Kusaka M, Maser RL, Takahashi H, Cowley BD, Grantham JJ (2003) Renal activation of extracellular signal-regulated kinase in rats with autosomal-dominant polycystic kidney disease. Kidney Int 63(2):427–437. doi: 10.1046/j.1523-1755.2003.00755.x CrossRefPubMedGoogle Scholar
  38. Nagao S, Morita M, Kugita M, Yoshihara D, Yamaguchi T, Kurahashi H, Calvet JP, Wallace DP (2010) Polycystic kidney disease in Han:SPRD Cy rats is associated with elevated expression and mislocalization of SamCystin. Am J Physiol Renal Physiol 299(5):F1078–F1086. doi: 10.1152/ajprenal.00504.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nagao S, Kugita M, Yoshihara D, Yamaguchi T (2012) Animal models for human polycystic kidney disease. Exp Anim/Jpn Assoc Lab Anim Sci 61(5):477–488Google Scholar
  40. Nakamura T, Ebihara I, Nagaoka I, Tomino Y, Nagao S, Takahashi H, Koide H (1993) Growth factor gene expression in kidney of murine polycystic kidney disease. J Am Soc Nephrol JASN 3(7):1378–1386PubMedGoogle Scholar
  41. Natoli TA, Smith LA, Rogers KA, Wang B, Komarnitsky S, Budman Y, Belenky A, Bukanov NO, Dackowski WR, Husson H, Russo RJ, Shayman JA, Ledbetter SR, Leonard JP, Ibraghimov-Beskrovnaya O (2010) Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med 16(7):788–792. doi: 10.1038/nm.2171 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Novalic Z, van der Wal AM, Leonhard WN, Koehl G, Breuning MH, Geissler EK, de Heer E, Peters DJ (2012) Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease. J Am Soc Nephrol JASN 23(5):842–853. doi: 10.1681/ASN.2011040340 CrossRefPubMedGoogle Scholar
  43. Omori S, Hida M, Fujita H, Takahashi H, Tanimura S, Kohno M, Awazu M (2006) Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J Am Soc Nephrol JASN 17(6):1604–1614. doi: 10.1681/ASN.2004090800 CrossRefPubMedGoogle Scholar
  44. Park EY, Sung YH, Yang MH, Noh JY, Park SY, Lee TY, Yook YJ, Yoo KH, Roh KJ, Kim I, Hwang YH, Oh GT, Seong JK, Ahn C, Lee HW, Park JH (2009) Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J Biol Chem 284(11):7214–7222. doi: 10.1074/jbc.M805890200 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3):709–718CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rocco MV, Neilson EG, Hoyer JR, Ziyadeh FN (1992) Attenuated expression of epithelial cell adhesion molecules in murine polycystic kidney disease. Am J Phys 262(4 Pt 2):F679–F686Google Scholar
  47. Ruggenenti P, Remuzzi A, Ondei P, Fasolini G, Antiga L, Ene-Iordache B, Remuzzi G, Epstein FH (2005) Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int 68(1):206–216. doi: 10.1111/j.1523-1755.2005.00395.x CrossRefPubMedGoogle Scholar
  48. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270(2):815–822CrossRefPubMedGoogle Scholar
  49. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, Rentsch KM, Spanaus KS, Senn O, Kristanto P, Scheffel H, Weishaupt D, Wuthrich RP (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363(9):820–829. doi: 10.1056/NEJMoa0907419 CrossRefPubMedGoogle Scholar
  50. Shibazaki S, Yu Z, Nishio S, Tian X, Thomson RB, Mitobe M, Louvi A, Velazquez H, Ishibe S, Cantley LG, Igarashi P, Somlo S (2008) Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum Mol Genet 17(11):1505–1516. doi: 10.1093/hmg/ddn039 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103(14):5466–5471. doi: 10.1073/pnas.0509694103 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shillingford JM, Piontek KB, Germino GG, Weimbs T (2010) Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J Am Soc Nephrol JASN 21(3):489–497. doi: 10.1681/ASN.2009040421 CrossRefPubMedGoogle Scholar
  53. Shillingford JM, Leamon CP, Vlahov IR, Weimbs T (2012) Folate-conjugated rapamycin slows progression of polycystic kidney disease. J Am Soc Nephrol JASN 23(10):1674–1681. doi: 10.1681/ASN.2012040367 CrossRefPubMedGoogle Scholar
  54. Smith LA, Bukanov NO, Husson H, Russo RJ, Barry TC, Taylor AL, Beier DR, Ibraghimov-Beskrovnaya O (2006) Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J Am Soc Nephrol JASN 17(10):2821–2831. doi: 10.1681/ASN.2006020136 CrossRefPubMedGoogle Scholar
  55. Sohara E, Luo Y, Zhang J, Manning DK, Beier DR, Zhou J (2008) Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. J Am Soc Nephrol JASN 19(3):469–476. doi: 10.1681/ASN.2006090985 CrossRefPubMedGoogle Scholar
  56. Spirli C, Morell CM, Locatelli L, Okolicsanyi S, Ferrero C, Kim AK, Fabris L, Fiorotto R, Strazzabosco M (2012) Cyclic AMP/PKA-dependent paradoxical activation of Raf/MEK/ERK signaling in polycystin-2 defective mice treated with sorafenib. Hepatology 56(6):2363–2374. doi: 10.1002/hep.25872 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sullivan LP, Wallace DP, Grantham JJ (1998) Chloride and fluid secretion in polycystic kidney disease. J Am Soc Nephrol JASN 9(5):903–916PubMedGoogle Scholar
  58. Ta MH, Rao P, Korgaonkar M, Foster SF, Peduto A, Harris DC, Rangan GK (2014) Pyrrolidine dithiocarbamate reduces the progression of total kidney volume and cyst enlargement in experimental polycystic kidney disease. Physiol Rep 2(12):e12196. doi:10.14814/phy2.12196CrossRefPubMedPubMedCentralGoogle Scholar
  59. Takiar V, Nishio S, Seo-Mayer P, King JD Jr, Li H, Zhang L, Karihaloo A, Hallows KR, Somlo S, Caplan MJ (2011) Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci U S A 108(6):2462–2467. doi: 10.1073/pnas.1011498108 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tao Y, Kim J, Faubel S, Wu JC, Falk SA, Schrier RW, Edelstein CL (2005a) Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc Natl Acad Sci U S A 102(19):6954–6959. doi: 10.1073/pnas.0408518102 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tao Y, Kim J, Stanley M, He Z, Faubel S, Schrier RW, Edelstein CL (2005b) Pathways of caspase-mediated apoptosis in autosomal-dominant polycystic kidney disease (ADPKD). Kidney Int 67(3):909–919. doi: 10.1111/j.1523-1755.2005.00155.x CrossRefPubMedGoogle Scholar
  62. Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH 2nd (2004) Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10(4):363–364. doi: 10.1038/nm1004 CrossRefPubMedGoogle Scholar
  63. Torres VE, Boletta A, Chapman A, Gattone V, Pei Y, Qian Q, Wallace DP, Weimbs T, Wuthrich RP (2010) Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases. Clin J Am Soc Nephrol CJASN 5(7):1312–1329. doi: 10.2215/CJN.01360210 CrossRefPubMedGoogle Scholar
  64. Torres VE, Meijer E, Bae KT, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang JJ, Czerwiec FS (2011) Rationale and design of the TEMPO (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes) 3–4 Study. Am J Kidney Dis Off J Nat Kidney Found 57(5):692–699. doi: 10.1053/j.ajkd.2010.11.029 CrossRefGoogle Scholar
  65. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS, Investigators TT (2012) Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367(25):2407–2418. doi: 10.1056/NEJMoa1205511 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP (2006) Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc 21(3):598–604. doi: 10.1093/ndt/gfi181 Google Scholar
  67. Wallace DP, Rome LA, Sullivan LP, Grantham JJ (2001) cAMP-dependent fluid secretion in rat inner medullary collecting ducts. Am J Physiol Renal Physiol 280(6):F1019–F1029PubMedGoogle Scholar
  68. Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Horl WH, Obermuller N, Arns W, Pavenstadt H, Gaedeke J, Buchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363(9):830–840. doi: 10.1056/NEJMoa1003491 CrossRefPubMedGoogle Scholar
  69. Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121(4):1231–1241. doi: 10.1172/JCI44145 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wang X, Wu Y, Ward CJ, Harris PC, Torres VE (2008) Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol JASN 19(1):102–108. doi: 10.1681/ASN.2007060688 CrossRefPubMedGoogle Scholar
  71. Warner G, Hein KZ, Nin V, Edwards M, Chini CC, Hopp K, Harris PC, Torres VE, Chini EN (2015) Food restriction ameliorates the development of polycystic kidney disease. J Am Soc Nephrol JASN. doi: 10.1681/ASN.2015020132 PubMedGoogle Scholar
  72. Watnick T, Germino GG (2010) mTOR inhibitors in polycystic kidney disease. N Engl J Med 363(9):879–881. doi: 10.1056/NEJMe1006925 CrossRefPubMedGoogle Scholar
  73. Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24(1):75–78. doi: 10.1038/71724 CrossRefPubMedGoogle Scholar
  74. Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley BD, Pelling JC, Grantham JJ (2003) Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63(6):1983–1994. doi: 10.1046/j.1523-1755.2003.00023.x CrossRefPubMedGoogle Scholar
  75. Yamaguchi T, Reif GA, Calvet JP, Wallace DP (2010) Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol 299(5):F944–F951. doi: 10.1152/ajprenal.00387.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS (2008) Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol JASN 19(7):1300–1310. doi: 10.1681/ASN.2007070828 CrossRefPubMedGoogle Scholar
  77. Ye M, Grant M, Sharma M, Elzinga L, Swan S, Torres VE, Grantham JJ (1992) Cyst fluid from human autosomal dominant polycystic kidneys promotes cyst formation and expansion by renal epithelial cells in vitro. J Am Soc Nephrol JASN 3(4):984–994PubMedGoogle Scholar
  78. Yuajit C, Chatsudthipong V (2016) Nutraceutical for autosomal dominant polycystic kidney disease therapy. J Med Assoc Thailand Chotmaihet thangphaet 99(Suppl 1):S97–S103Google Scholar
  79. Yuajit C, Muanprasat C, Gallagher AR, Fedeles SV, Kittayaruksakul S, Homvisasevongsa S, Somlo S, Chatsudthipong V (2014) Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease. Biochem Pharmacol 88(3):412–421. doi: 10.1016/j.bcp.2014.01.038 CrossRefPubMedGoogle Scholar
  80. Zafar I, Tao Y, Falk S, McFann K, Schrier RW, Edelstein CL (2007) Effect of statin and angiotensin-converting enzyme inhibition on structural and hemodynamic alterations in autosomal dominant polycystic kidney disease model. Am J Physiol Renal Physiol 293(3):F854–F859. doi: 10.1152/ajprenal.00059.2007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Molecular Medicine Laboratory, Department of Life systemsSookmyung Women’s UniversitySeoulSouth Korea

Personalised recommendations