Advertisement

Inflammation and Fibrosis in ADPKD

  • Hyowon Mun
  • Jong Hoon ParkEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 933)

Abstract

Diverse signaling pathways have been reported to be associated with polycystic kidney disease (PKD). Cell proliferation is widely known to be an important pathway related to this disease. However, studies on the interactions of inflammation and fibrosis with polycystic kidney disease have been limited. Inflammation is one of the protective systems involved in the response to foreign molecules. In PKD, it was reported that the activity of signaling pathways associated with inflammation is increased. Also, fibrosis is the development of excess fibrous tissue in organ or tissue. It is an abnormal phenomenon in which the extent of fibrous connective tissues is increased. In PKD, increases in the activity of molecules such as growth factor and TGF-β have been reported to occur and promote fibrosis. Therefore, the inflammation and fibrosis responses have been suggested as therapeutic targets for PKD. In order to guide further studies, this review indicates the roles of inflammatory and fibrosis signaling in PKD.

Keywords

Inflammation Fibrosis Polycystic kidney disease Macrophage TNF-alpha TGF-beta 

References

  1. Aaronson DS, Horvath CM (2002) A road map for those who don't know JAK-STAT. Science 296(5573):1653–1655. doi: 10.1126/science.1071545 CrossRefPubMedGoogle Scholar
  2. Banzi M, Aguiari G, Trimi V, Mangolini A, Pinton P, Witzgall R, Rizzuto R, del Senno L (2006) Polycystin-1 promotes PKCalpha-mediated NF-kappaB activation in kidney cells. Biochem Biophys Res Commun 350(2):257–262. doi: 10.1016/j.bbrc.2006.09.042 CrossRefPubMedGoogle Scholar
  3. Berthier CC, Wahl PR, Le Hir M, Marti HP, Wagner U, Rehrauer H, Wuthrich RP, Serra AL (2008) Sirolimus ameliorates the enhanced expression of metalloproteinases in a rat model of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant Off Publ Eur Dial Trans Assoc Eur Renal Assoc 23(3):880–889. doi: 10.1093/ndt/gfm697 Google Scholar
  4. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109(2):157–168CrossRefPubMedGoogle Scholar
  5. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122. doi: 10.1186/scrt512 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brosius FC 3rd, He JC (2015) JAK inhibition and progressive kidney disease. Curr Opin Nephrol Hypertens 24(1):88–95. doi: 10.1097/MNH.0000000000000079 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292(3):F905–F911. doi: 10.1152/ajprenal.00421.2006 CrossRefPubMedGoogle Scholar
  8. Chea SW, Lee KB (2009) TGF-beta mediated epithelial-mesenchymal transition in autosomal dominant polycystic kidney disease. Yonsei Med J 50(1):105–111. doi: 10.3349/ymj.2009.50.1.105 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen WC, Tzeng YS, Li H (2008) Gene expression in early and progression phases of autosomal dominant polycystic kidney disease. BMC Res Notes 1:131. doi: 10.1186/1756-0500-1-131 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen L, Zhou X, Fan LX, Yao Y, Swenson-Fields KI, Gadjeva M, Wallace DP, Peters DJ, Yu A, Grantham JJ, Li X (2015) Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. J Clin Invest 125(6):2399–2412. doi: 10.1172/JCI80467 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cisternas P, Vio CP, Inestrosa NC (2014) Role of Wnt signaling in tissue fibrosis, lessons from skeletal muscle and kidney. Curr Mol Med 14(4):510–522CrossRefPubMedGoogle Scholar
  12. Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, Chuang PT, Reiter JF (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10(1):70–76. doi: 10.1038/ncb1670 CrossRefPubMedGoogle Scholar
  13. Cowley BD Jr, Ricardo SD, Nagao S, Diamond JR (2001) Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int 60(6):2087–2096. doi: 10.1046/j.1523-1755.2001.00065.x CrossRefPubMedGoogle Scholar
  14. Dang Y, Liu B, Xu P, Zhu P, Zhai Y, Liu M, Ye X (2014) Gpr48 deficiency induces polycystic kidney lesions and renal fibrosis in mice by activating Wnt signal pathway. PLoS One 9(3):e89835. doi: 10.1371/journal.pone.0089835 CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Groote D, Grau GE, Dehart I, Franchimont P (1993) Stabilisation of functional tumor necrosis factor-alpha by its soluble TNF receptors. Eur Cytokine Netw 4(5):359–362PubMedGoogle Scholar
  16. Elberg D, Jayaraman S, Turman MA, Elberg G (2012) Transforming growth factor-beta inhibits cystogenesis in human autosomal dominant polycystic kidney epithelial cells. Exp Cell Res 318(13):1508–1516. doi: 10.1016/j.yexcr.2012.03.021 CrossRefPubMedGoogle Scholar
  17. Gardner KD Jr, Burnside JS, Elzinga LW, Locksley RM (1991) Cytokines in fluids from polycystic kidneys. Kidney Int 39(4):718–724CrossRefPubMedGoogle Scholar
  18. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684. doi: 10.1038/sj.onc.1209954 CrossRefPubMedGoogle Scholar
  19. Grantham JJ (1997) Mechanisms of progression in autosomal dominant polycystic kidney disease. Kidney Int Suppl 63:S93–S97PubMedGoogle Scholar
  20. Gregory JL, Morand EF, McKeown SJ, Ralph JA, Hall P, Yang YH, McColl SR, Hickey MJ (2006) Macrophage migration inhibitory factor induces macrophage recruitment via CC chemokine ligand 2. J Immunol 177(11):8072–8079CrossRefPubMedGoogle Scholar
  21. Jost PJ, Ruland J (2007) Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109(7):2700–2707. doi: 10.1182/blood-2006-07-025809 PubMedGoogle Scholar
  22. Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner SP, Droge W, Schmitz ML (2000) The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur J Biochem/FEBS 267(12):3828–3835CrossRefGoogle Scholar
  23. Karihaloo A, Koraishy F, Huen SC, Lee Y, Merrick D, Caplan MJ, Somlo S, Cantley LG (2011) Macrophages promote cyst growth in polycystic kidney disease. J Am Soc Nephrol JASN 22(10):1809–1814. doi: 10.1681/ASN.2011010084 CrossRefPubMedGoogle Scholar
  24. Kim K, Lu Z, Hay ED (2002) Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26(5):463–476CrossRefPubMedGoogle Scholar
  25. Klingel R, Storkel S, Dippold W, Rumpelt HJ, Moll R, Kohler H, Meyer zum Buschenfelde KH (1991) Autosomal dominant polycystic kidney disease--in vitro culture of cyst-lining epithelial cells. Virchows Arch B Cell Pathol Incl Mol Pathol 61(3):189–199PubMedGoogle Scholar
  26. Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4(2):68–75CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lal M, Song X, Pluznick JL, Di Giovanni V, Merrick DM, Rosenblum ND, Chauvet V, Gottardi CJ, Pei Y, Caplan MJ (2008) Polycystin-1 C-terminal tail associates with beta-catenin and inhibits canonical Wnt signaling. Hum Mol Genet 17(20):3105–3117. doi: 10.1093/hmg/ddn208 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lan HY (2011) Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci 7(7):1056–1067CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, Sun HL, Li LY, Ping B, Huang WC, He X, Hung JY, Lai CC, Ding Q, Su JL, Yang JY, Sahin AA, Hortobagyi GN, Tsai FJ, Tsai CH, Hung MC (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130(3):440–455. doi: 10.1016/j.cell.2007.05.058 CrossRefPubMedGoogle Scholar
  30. Li X, Magenheimer BS, Xia S, Johnson T, Wallace DP, Calvet JP, Li R (2008) A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat Med 14(8):863–868. doi: 10.1038/nm1783 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu B, Li C, Liu Z, Dai Z, Tao Y (2012) Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease. BMC Nephrol 13:109. doi: 10.1186/1471-2369-13-109 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. doi: 10.1146/annurev.cellbio.20.010403.113126 CrossRefPubMedGoogle Scholar
  33. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, Kane ME, Obara T, Weimbs T (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10(1):57–69. doi: 10.1016/j.devcel.2005.12.005 CrossRefPubMedGoogle Scholar
  34. Mangolini A, Bogo M, Durante C, Borgatti M, Gambari R, Harris PC, Rizzuto R, Pinton P, Aguiari G, del Senno L (2010) NF-kappaB activation is required for apoptosis in fibrocystin/polyductin-depleted kidney epithelial cells. Apoptosis Int J Program Cell Death 15(1):94–104. doi: 10.1007/s10495-009-0426-7 CrossRefGoogle Scholar
  35. Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1(3):169–178. doi: 10.1038/35043051 CrossRefPubMedGoogle Scholar
  36. Norman J (2011) Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta 1812(10):1327–1336. doi: 10.1016/j.bbadis.2011.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Obermuller N, Morente N, Kranzlin B, Gretz N, Witzgall R (2001) A possible role for metalloproteinases in renal cyst development. Am J Physiol Renal Physiol 280(3):F540–F550PubMedGoogle Scholar
  38. Olsan EE, Mukherjee S, Wulkersdorfer B, Shillingford JM, Giovannone AJ, Todorov G, Song X, Pei Y, Weimbs T (2011) Signal transducer and activator of transcription-6 (STAT6) inhibition suppresses renal cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A 108(44):18067–18072. doi: 10.1073/pnas.1111966108 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Qin S, Taglienti M, Cai L, Zhou J, Kreidberg JA (2012) c-Met and NF-kappaB-dependent overexpression of Wnt7a and -7b and Pax2 promotes cystogenesis in polycystic kidney disease. J Am Soc Nephrol JASN 23(8):1309–1318. doi: 10.1681/ASN.2011030277 CrossRefPubMedGoogle Scholar
  40. Rankin CA, Suzuki K, Itoh Y, Ziemer DM, Grantham JJ, Calvet JP, Nagase H (1996) Matrix metalloproteinases and TIMPS in cultured C57BL/6 J-cpk kidney tubules. Kidney Int 50(3):835–844CrossRefPubMedGoogle Scholar
  41. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(Pt 8):1281–1283. doi: 10.1242/jcs.00963 CrossRefPubMedGoogle Scholar
  42. Saadi-Kheddouci S, Berrebi D, Romagnolo B, Cluzeaud F, Peuchmaur M, Kahn A, Vandewalle A, Perret C (2001) Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene. Oncogene 20(42):5972–5981. doi: 10.1038/sj.onc.1204825 CrossRefPubMedGoogle Scholar
  43. Schaefer L, Han X, Gretz N, Hafner C, Meier K, Matzkies F, Schaefer RM (1996) Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han:SPRD rat. Kidney Int 49(1):75–81CrossRefPubMedGoogle Scholar
  44. Skaug B, Jiang X, Chen ZJ (2009) The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78:769–796. doi: 10.1146/annurev.biochem.78.070907.102750 CrossRefPubMedGoogle Scholar
  45. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372(6507):679–683. doi: 10.1038/372679a0 CrossRefPubMedGoogle Scholar
  46. Sugimoto Y, Narumiya S (2007) Prostaglandin E receptors. J Biol Chem 282(16):11613–11617. doi: 10.1074/jbc.R600038200 CrossRefPubMedGoogle Scholar
  47. Surendran K, McCaul SP, Simon TC (2002) A role for Wnt-4 in renal fibrosis. Am J Physiol Renal Physiol 282(3):F431–F441. doi: 10.1152/ajprenal.0009.2001 CrossRefPubMedGoogle Scholar
  48. Sureshbabu A, Muhsin SA, Choi ME (2016) TGF-beta signaling in the kidney: pro-fibrotic and protective effects. Am J Physiol Renal Physiol 00365:02015. doi: 10.1152/ajprenal.00365.2015 Google Scholar
  49. Swenson-Fields KI, Vivian CJ, Salah SM, Peda JD, Davis BM, van Rooijen N, Wallace DP, Fields TA (2013) Macrophages promote polycystic kidney disease progression. Kidney Int 83(5):855–864. doi: 10.1038/ki.2012.446 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ta MH, Harris DC, Rangan GK (2013) Role of interstitial inflammation in the pathogenesis of polycystic kidney disease. Nephrology 18(5):317–330. doi: 10.1111/nep.12045 CrossRefPubMedGoogle Scholar
  51. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107(1):7–11. doi: 10.1172/JCI11830 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Talbot JJ, Shillingford JM, Vasanth S, Doerr N, Mukherjee S, Kinter MT, Watnick T, Weimbs T (2011) Polycystin-1 regulates STAT activity by a dual mechanism. Proc Natl Acad Sci U S A 108(19):7985–7990. doi: 10.1073/pnas.1103816108 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Talbot JJ, Song X, Wang X, Rinschen MM, Doerr N, LaRiviere WB, Schermer B, Pei YP, Torres VE, Weimbs T (2014) The cleaved cytoplasmic tail of polycystin-1 regulates Src-dependent STAT3 activation. J Am Soc Nephrol JASN 25(8):1737–1748. doi: 10.1681/ASN.2013091026 CrossRefPubMedGoogle Scholar
  54. Vernon MA, Mylonas KJ, Hughes J (2010) Macrophages and renal fibrosis. Semin Nephrol 30(3):302–317. doi: 10.1016/j.semnephrol.2010.03.004 CrossRefPubMedGoogle Scholar
  55. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10(1):45–65. doi: 10.1038/sj.cdd.4401189 CrossRefPubMedGoogle Scholar
  56. Zeisberg M, Kalluri R (2013) Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 304(3):C216–C225. doi: 10.1152/ajpcell.00328.2012 CrossRefPubMedGoogle Scholar
  57. Zheng D, Wolfe M, Cowley BD Jr, Wallace DP, Yamaguchi T, Grantham JJ (2003) Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. J Am Soc Nephrol JASN 14(10):2588–2595CrossRefPubMedGoogle Scholar
  58. Zhou JX, Fan LX, Li X, Calvet JP, Li X (2015) TNFalpha signaling regulates cystic epithelial cell proliferation through Akt/mTOR and ERK/MAPK/Cdk2 mediated Id2 signaling. PLoS One 10(6):e0131043. doi: 10.1371/journal.pone.0131043 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Molecular Medicine Laboratory, Department of Life systemsSookmyung Women’s UniversitySeoulSouth Korea
  2. 2.Department of Life systemsSookmyung Women’s UniversitySeoulSouth Korea

Personalised recommendations