Cell Proliferation and Apoptosis in ADPKD

  • Eun Ji LeeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 933)


Increased tubular epithelial cell proliferation with fluid secretion is a key hallmark of autosomal dominant polycystic kidney disease (ADPKD). With disruption of either PKD1 or PKD2, the main causative genes of ADPKD, intracellular calcium homeostasis and cAMP accumulation are disrupted, which in turn leads to altered signaling in the pathways that regulate cell proliferation. These dysregulations finally stimulate the development of fluid-filled cysts originating from abnormally proliferating renal tubular cells. In addition, dysregulated apoptosis is observed in dilated cystic tubules. An imbalance between cell proliferation and apoptosis seems to contribute to cyst growth and renal tissue remodeling in ADPKD. In this section, the mechanisms through which cell proliferation and apoptosis are involved in disease progression, and further, how those signaling pathways impinge on each other in ADPKD will be discussed.


Apoptosis Proliferation Autosomal dominant polycystic kidney disease ADPKD 


  1. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308CrossRefPubMedGoogle Scholar
  2. Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P (2008) Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9(5):472–479. doi: 10.1038/embor.2008.29 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109(2):157–168CrossRefPubMedGoogle Scholar
  4. Bukanov NO, Smith LA, Klinger KW, Ledbetter SR, Ibraghimov-Beskrovnaya O (2006) Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 444(7121):949–952. doi: 10.1038/nature05348 CrossRefPubMedGoogle Scholar
  5. Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE (2015) Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 11(8):451–464. doi: 10.1038/nrneph.2015.39 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, Piontek KB, Germino GG, Pandolfi PP, Boletta A (2009) Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol 29(9):2359–2371. doi: 10.1128/MCB.01259-08 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S (2011) Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol 4(5):476–495PubMedPubMedCentralGoogle Scholar
  8. Ecder T, Melnikov VY, Stanley M, Korular D, Lucia MS, Schrier RW, Edelstein CL (2002) Caspases, Bcl-2 proteins and apoptosis in autosomal-dominant polycystic kidney disease. Kidney Int 61(4):1220–1230. doi: 10.1046/j.1523-1755.2002.00250.x CrossRefPubMedGoogle Scholar
  9. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi: 10.1080/01926230701320337 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348. doi: 10.1038/35077213 CrossRefPubMedGoogle Scholar
  11. Gattone VH 2nd, Wang X, Harris PC, Torres VE (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9(10):1323–1326. doi: 10.1038/nm935 CrossRefPubMedGoogle Scholar
  12. Goilav B (2011) Apoptosis in polycystic kidney disease. Biochim Biophys Acta 1812(10):1272–1280. doi: 10.1016/j.bbadis.2011.01.006 CrossRefPubMedGoogle Scholar
  13. Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2 + -permeable nonselective cation channel. Proc Natl Acad Sci U S A 98(3):1182–1187CrossRefPubMedGoogle Scholar
  14. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337. doi: 10.1146/ CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ibraghimov-Beskrovnaya O (2007) Targeting dysregulated cell cycle and apoptosis for polycystic kidney disease therapy. Cell Cycle 6(7):776–779CrossRefPubMedGoogle Scholar
  16. Joshi M, Kulkarni A, Pal JK (2013) Small molecule modulators of eukaryotic initiation factor 2alpha kinases, the key regulators of protein synthesis. Biochimie 95(11):1980–1990. doi: 10.1016/j.biochi.2013.07.030 CrossRefPubMedGoogle Scholar
  17. Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13(6):1153–1160PubMedGoogle Scholar
  18. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(Pt 20):3589–3594. doi: 10.1242/jcs.051011 CrossRefPubMedPubMedCentralGoogle Scholar
  19. LaRiviere WB, Irazabal MV, Torres VE (2015) Novel therapeutic approaches to autosomal dominant polycystic kidney disease. Transl Res J Lab Clin Med 165(4):488–498. doi: 10.1016/j.trsl.2014.11.003 CrossRefGoogle Scholar
  20. Li Y, Wright JM, Qian F, Germino GG, Guggino WB (2005) Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 280(50):41298–41306. doi: 10.1074/jbc.M510082200 CrossRefPubMedGoogle Scholar
  21. Liang G, Yang J, Wang Z, Li Q, Tang Y, Chen XZ (2008) Polycystin-2 down-regulates cell proliferation via promoting PERK-dependent phosphorylation of eIF2alpha. Hum Mol Genet 17(20):3254–3262. doi: 10.1093/hmg/ddn221 CrossRefPubMedGoogle Scholar
  22. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol CB 15(8):702–713. doi: 10.1016/j.cub.2005.02.053 CrossRefPubMedGoogle Scholar
  23. Ma M, Tian X, Igarashi P, Pazour GJ, Somlo S (2013) Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 45(9):1004–1012. doi: 10.1038/ng.2715 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF (2007) Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 132(3):1104–1116. doi: 10.1053/j.gastro.2006.12.039 CrossRefPubMedGoogle Scholar
  25. Masyuk TV, Radtke BN, Stroope AJ, Banales JM, Gradilone SA, Huang B, Masyuk AI, Hogan MC, Torres VE, Larusso NF (2013) Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology 58(1):409–421. doi: 10.1002/hep.26140 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mitchison JM (2003) Growth during the cell cycle. Int Rev Cytol 226:165–258CrossRefPubMedGoogle Scholar
  27. Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813(1):238–259. doi: 10.1016/j.bbamcr.2010.10.010 CrossRefPubMedGoogle Scholar
  28. Riella C, Czarnecki PG, Steinman TI (2014) Therapeutic advances in the treatment of polycystic kidney disease. Nephron Clin Pract 128(3-4):297–302. doi: 10.1159/000368244 CrossRefPubMedGoogle Scholar
  29. Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31(6):342–348. doi: 10.1016/j.tibs.2006.04.003 CrossRefPubMedGoogle Scholar
  30. Santoso NG, Cebotaru L, Guggino WB (2011) Polycystin-1, 2, and STIM1 interact with IP(3)R to modulate ER Ca release through the PI3K/Akt pathway. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 27(6):715–726. doi: 10.1159/000330080 CrossRefGoogle Scholar
  31. Sorenson CM, Padanilam BJ, Hammerman MR (1996) Abnormal postpartum renal development and cystogenesis in the bcl-2 (-/-) mouse. Am J Phys 271(1 Pt 2):F184–F193Google Scholar
  32. Tao Y, Kim J, Stanley M, He Z, Faubel S, Schrier RW, Edelstein CL (2005) Pathways of caspase-mediated apoptosis in autosomal-dominant polycystic kidney disease (ADPKD). Kidney Int 67(3):909–919. doi: 10.1111/j.1523-1755.2005.00155.x CrossRefPubMedGoogle Scholar
  33. Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH 2nd (2004) Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10(4):363–364. doi: 10.1038/nm1004 CrossRefPubMedGoogle Scholar
  34. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75(2):229–240CrossRefPubMedGoogle Scholar
  35. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP (2006) Inhibition of mTOR with sirolimus slows disease progression in Han: SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc 21(3):598–604. doi: 10.1093/ndt/gfi181 Google Scholar
  36. Wang X, Gattone V 2nd, Harris PC, Torres VE (2005) Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol JASN 16(4):846–851. doi: 10.1681/ASN.2004121090 CrossRefPubMedGoogle Scholar
  37. Wang X, Wu Y, Ward CJ, Harris PC, Torres VE (2008) Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol JASN 19(1):102–108. doi: 10.1681/ASN.2007060688 CrossRefPubMedGoogle Scholar
  38. Wang X, Ward CJ, Harris PC, Torres VE (2010) Cyclic nucleotide signaling in polycystic kidney disease. Kidney Int 77(2):129–140. doi: 10.1038/ki.2009.438 CrossRefPubMedGoogle Scholar
  39. Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274(29):20049–20052CrossRefPubMedGoogle Scholar
  40. Woo D (1995) Apoptosis and loss of renal tissue in polycystic kidney diseases. N Engl J Med 333(1):18–25. doi: 10.1056/NEJM199507063330104 CrossRefPubMedGoogle Scholar
  41. Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley BD, Pelling JC, Grantham JJ (2003) Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63(6):1983–1994. doi: 10.1046/j.1523-1755.2003.00023.x CrossRefPubMedGoogle Scholar
  42. Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP (2004) Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 279(39):40419–40430. doi: 10.1074/jbc.M405079200 CrossRefPubMedGoogle Scholar
  43. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12(1):9–18. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  44. Zhou XJ, Kukes G (1998) Pathogenesis of autosomal dominant polycystic kidney disease: role of apoptosis. Diagn Mol Pathol Am J Sur Pathol B 7(2):65–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Molecular Medicine Laboratory, Department of Life systemsSookmyung Women’s UniversitySeoulSouth Korea

Personalised recommendations