Genetic Mechanisms of ADPKD

  • Do Yeon Kim
  • Jong Hoon ParkEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 933)


Autosomal dominant polycystic kidney disease is caused by mutation of PKD1 (polycystic kidney disease-1) or PKD2 (polycystic kidney disease-2). PKD1 and PKD2 encode PC1 (polycystin-1) and PC2 (polycystin-2), respectively. In addition, the mutation of cilia-associated proteins is also a recognized major factor of pathogenesis, since PC1 and PC2 are located in primary cilium. Abnormalities of PC1 or PC2 lead to aberrant signaling through downstream pathways, such as the negative growth regulation, G protein activation, and canonical and non-canonical Wnt pathways. According to the “second hit” model, an additional somatic mutation results in the expansion of cyst growth. In this chapter we discuss the genetic mechanisms and signaling pathways involved in ADPKD.


Genetic mechanism PKD Mutation PKD1 PKD2 Polycystin-1 Polycystin-2 Signaling pathways 


  1. Anyatonwu GI, Ehrlich BE (2005) Organic cation permeation through the channel formed by polycystin-2. J Biol Chem 280(33):29488–29493. doi: 10.1074/jbc.M504359200 CrossRefPubMedGoogle Scholar
  2. Anyatonwu GI, Estrada M, Tian X, Somlo S, Ehrlich BE (2007) Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc Natl Acad Sci U S A 104(15):6454–6459. doi: 10.1073/pnas.0610324104 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Babich V, Zeng WZ, Yeh BI, Ibraghimov-Beskrovnaya O, Cai Y, Somlo S, Huang CL (2004) The N-terminal extracellular domain is required for polycystin-1-dependent channel activity. J Biol Chem 279(24):25582–25589. doi: 10.1074/jbc.M402829200 CrossRefPubMedGoogle Scholar
  4. Banizs B, Komlosi P, Bevensee MO, Schwiebert EM, Bell PD, Yoder BK (2007) Altered pH(i) regulation and Na(+)/HCO3(−) transporter activity in choroid plexus of cilia-defective Tg737(orpk) mutant mouse. Am J Physiol Cell Physiol 292(4):C1409–C1416. doi: 10.1152/ajpcell.00408.2006 CrossRefPubMedGoogle Scholar
  5. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109(2):157–168CrossRefPubMedGoogle Scholar
  6. Brasier JL, Henske EP (1997) Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest 99(2):194–199. doi: 10.1172/JCI119147 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL, Chothia C (1999) The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 18(2):297–305. doi: 10.1093/emboj/18.2.297 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274(40):28557–28565CrossRefPubMedGoogle Scholar
  9. Casuscelli J, Schmidt S, DeGray B, Petri ET, Celic A, Folta-Stogniew E, Ehrlich BE, Boggon TJ (2009) Analysis of the cytoplasmic interaction between polycystin-1 and polycystin-2. Am J Physiol Renal Physiol 297(5):F1310–F1315. doi: 10.1152/ajprenal.00412.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chapin HC, Caplan MJ (2010) The cell biology of polycystic kidney disease. J Cell Biol 191(4):701–710. doi: 10.1083/jcb.201006173 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B, Onuchic LF, Attie-Bitach T, Guicharnaud L, Devuyst O, Germino GG, Gubler MC (2002) Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. Am J Pathol 160(3):973–983. doi: 10.1016/S0002-9440(10)64919-X CrossRefPubMedPubMedCentralGoogle Scholar
  12. Choi YH, Suzuki A, Hajarnis S, Ma Z, Chapin HC, Caplan MJ, Pontoglio M, Somlo S, Igarashi P (2011) Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases. Proc Natl Acad Sci U S A 108(26):10679–10684. doi: 10.1073/pnas.1016214108 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cornec-Le Gall E, Audrezet MP, Chen JM, Hourmant M, Morin MP, Perrichot R, Charasse C, Whebe B, Renaudineau E, Jousset P, Guillodo MP, Grall-Jezequel A, Saliou P, Ferec C, Le Meur Y (2013) Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol JASN 24(6):1006–1013. doi: 10.1681/ASN.2012070650 CrossRefPubMedGoogle Scholar
  14. Delmas P, Nomura H, Li X, Lakkis M, Luo Y, Segal Y, Fernandez-Fernandez JM, Harris P, Frischauf AM, Brown DA, Zhou J (2002) Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J Biol Chem 277(13):11276–11283. doi: 10.1074/jbc.M110483200 CrossRefPubMedGoogle Scholar
  15. Dere R, Wilson PD, Sandford RN, Walker CL (2010) Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS One 5(2):e9239. doi: 10.1371/journal.pone.0009239 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, Piontek KB, Germino GG, Pandolfi PP, Boletta A (2009) Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol 29(9):2359–2371. doi: 10.1128/MCB.01259-08 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38(1):21–23. doi: 10.1038/ng1701 CrossRefPubMedGoogle Scholar
  18. Gallagher AR, Germino GG, Somlo S (2010) Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 17(2):118–130. doi: 10.1053/j.ackd.2010.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gattone VH 2nd, Wang X, Harris PC, Torres VE (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9(10):1323–1326. doi: 10.1038/nm935 CrossRefPubMedGoogle Scholar
  20. Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2 + −permeable nonselective cation channel. Proc Natl Acad Sci U S A 98(3):1182–1187CrossRefPubMedGoogle Scholar
  21. Grantham JJ (1996) The etiology, pathogenesis, and treatment of autosomal dominant polycystic kidney disease: recent advances. Am J Kidney Dis Off J Nat Kidney Found 28(6):788–803CrossRefGoogle Scholar
  22. Grimm DH, Cai Y, Chauvet V, Rajendran V, Zeltner R, Geng L, Avner ED, Sweeney W, Somlo S, Caplan MJ (2003) Polycystin-1 distribution is modulated by polycystin-2 expression in mammalian cells. J Biol Chem 278(38):36786–36793. doi: 10.1074/jbc.M306536200 CrossRefPubMedGoogle Scholar
  23. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and −2 produces unique cation-permeable currents. Nature 408(6815):990–994. doi: 10.1038/35050128 CrossRefPubMedGoogle Scholar
  24. Harris PC, Ward CJ, Peral B, Hughes J (1995) Polycystic kidney disease. 1: identification and analysis of the primary defect. J Am Soc Nephrol JASN 6(4):1125–1133PubMedGoogle Scholar
  25. Hateboer N, v Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353(9147):103–107CrossRefPubMedGoogle Scholar
  26. Hidaka S, Konecke V, Osten L, Witzgall R (2004) PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2. J Biol Chem 279(33):35009–35016. doi: 10.1074/jbc.M314206200 CrossRefPubMedGoogle Scholar
  27. Hopp K, Ward CJ, Hommerding CJ, Nasr SH, Tuan HF, Gainullin VG, Rossetti S, Torres VE, Harris PC (2012) Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest 122(11):4257–4273. doi: 10.1172/JCI64313 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hovater MB, Olteanu D, Welty EA, Schwiebert EM (2008) Purinergic signaling in the lumen of a normal nephron and in remodeled PKD encapsulated cysts. Purinergic Signal 4(2):109–124. doi: 10.1007/s11302-008-9102-6 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huan Y, van Adelsberg J (1999) Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 104(10):1459–1468. doi: 10.1172/JCI5111 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412(2):179–190. doi: 10.1042/BJ20080281 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ibraghimov-Beskrovnaya O, Dackowski WR, Foggensteiner L, Coleman N, Thiru S, Petry LR, Burn TC, Connors TD, Van Raay T, Bradley J, Qian F, Onuchic LF, Watnick TJ, Piontek K, Hakim RM, Landes GM, Germino GG, Sandford R, Klinger KW (1997) Polycystin: in vitro synthesis, in vivo tissue expression, and subcellular localization identifies a large membrane-associated protein. Proc Natl Acad Sci U S A 94(12):6397–6402CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim I, Ding T, Fu Y, Li C, Cui L, Li A, Lian P, Liang D, Wang DW, Guo C, Ma J, Zhao P, Coffey RJ, Zhan Q, Wu G (2009) Conditional mutation of Pkd2 causes cystogenesis and upregulates beta-catenin. J Am Soc Nephrol JASN 20(12):2556–2569. doi: 10.1681/ASN.2009030271 CrossRefPubMedGoogle Scholar
  33. Kip SN, Hunter LW, Ren Q, Harris PC, Somlo S, Torres VE, Sieck GC, Qian Q (2005) [Ca2+]i reduction increases cellular proliferation and apoptosis in vascular smooth muscle cells: relevance to the ADPKD phenotype. Circ Res 96(8):873–880. doi: 10.1161/01.RES.0000163278.68142.8a CrossRefPubMedGoogle Scholar
  34. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4(3):191–197. doi: 10.1038/ncb754 CrossRefPubMedGoogle Scholar
  35. Lal M, Song X, Pluznick JL, Di Giovanni V, Merrick DM, Rosenblum ND, Chauvet V, Gottardi CJ, Pei Y, Caplan MJ (2008) Polycystin-1 C-terminal tail associates with beta-catenin and inhibits canonical Wnt signaling. Hum Mol Genet 17(20):3105–3117. doi: 10.1093/hmg/ddn208 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li Y, Santoso NG, Yu S, Woodward OM, Qian F, Guggino WB (2009) Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem 284(52):36431–36441. doi: 10.1074/jbc.M109.068916 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liang G, Yang J, Wang Z, Li Q, Tang Y, Chen XZ (2008) Polycystin-2 down-regulates cell proliferation via promoting PERK-dependent phosphorylation of eIF2alpha. Hum Mol Genet 17(20):3254–3262. doi: 10.1093/hmg/ddn221 CrossRefPubMedGoogle Scholar
  38. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, Kane ME, Obara T, Weimbs T (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10(1):57–69. doi: 10.1016/j.devcel.2005.12.005 CrossRefPubMedGoogle Scholar
  39. Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131(3):911–920. doi: 10.1053/j.gastro.2006.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF (2007) Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 132(3):1104–1116. doi: 10.1053/j.gastro.2006.12.039 CrossRefPubMedGoogle Scholar
  41. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272(5266):1339–1342CrossRefPubMedGoogle Scholar
  42. Montesano R, Ghzili H, Carrozzino F, Rossier BC, Feraille E (2009) cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells. Am J Physiol Renal Physiol 296(2):F446–F457. doi: 10.1152/ajprenal.90415.2008 CrossRefPubMedGoogle Scholar
  43. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2):129–137. doi: 10.1038/ng1076 CrossRefPubMedGoogle Scholar
  44. Nishio S, Hatano M, Nagata M, Horie S, Koike T, Tokuhisa T, Mochizuki T (2005) Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J Clin Invest 115(4):910–918. doi: 10.1172/JCI22850 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nishio S, Tian X, Gallagher AR, Yu Z, Patel V, Igarashi P, Somlo S (2010) Loss of oriented cell division does not initiate cyst formation. J Am Soc Nephrol JASN 21(2):295–302. doi: 10.1681/ASN.2009060603 CrossRefPubMedGoogle Scholar
  46. Parnell SC, Magenheimer BS, Maser RL, Rankin CA, Smine A, Okamoto T, Calvet JP (1998) The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro. Biochem Biophys Res Commun 251(2):625–631. doi: 10.1006/bbrc.1998.9514 CrossRefPubMedGoogle Scholar
  47. Pei Y, Watnick T, He N, Wang K, Liang Y, Parfrey P, Germino G, St George-Hyslop P (1999) Somatic PKD2 mutations in individual kidney and liver cysts support a “two-hit” model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol JASN 10(7):1524–1529PubMedGoogle Scholar
  48. Pei Y, Lan Z, Wang K, Garcia-Gonzalez M, He N, Dicks E, Parfrey P, Germino G, Watnick T (2012) A missense mutation in PKD1 attenuates the severity of renal disease. Kidney Int 81(4):412–417. doi: 10.1038/ki.2011.370 CrossRefPubMedGoogle Scholar
  49. Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG (2007) A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 13(12):1490–1495. doi: 10.1038/nm1675 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Putnam WC, Swenson SM, Reif GA, Wallace DP, Helmkamp GM Jr, Grantham JJ (2007) Identification of a forskolin-like molecule in human renal cysts. J Am Soc Nephrol JASN 18(3):934–943. doi: 10.1681/ASN.2006111218 CrossRefPubMedGoogle Scholar
  51. Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87(6):979–987CrossRefPubMedGoogle Scholar
  52. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16(2):179–183. doi: 10.1038/ng0697-179 CrossRefPubMedGoogle Scholar
  53. Qian F, Boletta A, Bhunia AK, Xu H, Liu L, Ahrabi AK, Watnick TJ, Zhou F, Germino GG (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci U S A 99(26):16981–16986. doi: 10.1073/pnas.252484899 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rossetti S, Harris PC (2013) The genetics of vascular complications in autosomal dominant polycystic kidney disease (ADPKD). Curr Hypertens Rev 9(1):37–43CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rossetti S, Burton S, Strmecki L, Pond GR, San Millan JL, Zerres K, Barratt TM, Ozen S, Torres VE, Bergstralh EJ, Winearls CG, Harris PC (2002) The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J Am Soc Nephrol JASN 13(5):1230–1237CrossRefPubMedGoogle Scholar
  56. Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC, Consortium C (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol JASN 18(7):2143–2160. doi: 10.1681/ASN.2006121387 CrossRefPubMedGoogle Scholar
  57. Rossetti S, Kubly VJ, Consugar MB, Hopp K, Roy S, Horsley SW, Chauveau D, Rees L, Barratt TM, Van’t Hoff WG, Niaudet P, Torres VE, Harris PC (2009) Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int 75(8):848–855. doi: 10.1038/ki.2008.686 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103(14):5466–5471. doi: 10.1073/pnas.0509694103 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Spirli C, Locatelli L, Fiorotto R, Morell CM, Fabris L, Pozzan T, Strazzabosco M (2012) Altered store operated calcium entry increases cyclic 3′,5′-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology 55(3):856–868. doi: 10.1002/hep.24723 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Streets AJ, Wagner BE, Harris PC, Ward CJ, Ong AC (2009) Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells. J Cell Sci 122(Pt 9):1410–1417. doi: 10.1242/jcs.045021 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Torres VE, Harris PC (2014) Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol JASN 25(1):18–32. doi: 10.1681/ASN.2013040398 CrossRefPubMedGoogle Scholar
  62. Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci U S A 94(13):6965–6970CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye C, Brown EM, Hediger MA, Zhou J (2001) Polycystin-2 is a novel cation channel implicated in defective intracellular Ca(2+) homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282(1):341–350. doi: 10.1006/bbrc.2001.4554 CrossRefPubMedGoogle Scholar
  64. Wang X, Ward CJ, Harris PC, Torres VE (2010) Cyclic nucleotide signaling in polycystic kidney disease. Kidney Int 77(2):129–140. doi: 10.1038/ki.2009.438 CrossRefPubMedGoogle Scholar
  65. Ward CJ, Turley H, Ong AC, Comley M, Biddolph S, Chetty R, Ratcliffe PJ, Gattner K, Harris PC (1996) Polycystin, the polycystic kidney disease 1 protein, is expressed by epithelial cells in fetal, adult, and polycystic kidney. Proc Natl Acad Sci U S A 93(4):1524–1528CrossRefPubMedPubMedCentralGoogle Scholar
  66. Watnick TJ, Torres VE, Gandolph MA, Qian F, Onuchic LF, Klinger KW, Landes G, Germino GG (1998) Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol Cell 2(2):247–251CrossRefPubMedGoogle Scholar
  67. Wei W, Hackmann K, Xu H, Germino G, Qian F (2007) Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem 282(30):21729–21737. doi: 10.1074/jbc.M703218200 CrossRefPubMedGoogle Scholar
  68. Xu C, Rossetti S, Jiang L, Harris PC, Brown-Glaberman U, Wandinger-Ness A, Bacallao R, Alper SL (2007) Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am J Physiol Renal Physiol 292(3):F930–F945. doi: 10.1152/ajprenal.00285.2006 CrossRefPubMedGoogle Scholar
  69. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol JASN 13(10):2508–2516CrossRefPubMedGoogle Scholar
  70. Yu S, Hackmann K, Gao J, He X, Piontek K, Garcia-Gonzalez MA, Menezes LF, Xu H, Germino GG, Zuo J, Qian F (2007) Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc Natl Acad Sci U S A 104(47):18688–18693. doi: 10.1073/pnas.0708217104 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, Tong L, Isacoff EY, Yang J (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106(28):11558–11563. doi: 10.1073/pnas.0903684106 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Molecular Medicine Laboratory, Department of Life systemsSookmyung Women’s UniversitySeoulSouth Korea
  2. 2.Department of Life systemsSookmyung Women’s UniversitySeoulSouth Korea

Personalised recommendations