Recent Trends in ADPKD Research

  • Yu Bin Shin
  • Jong Hoon ParkEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 933)


Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common inherited disorders. It is the fourth leading cause of renal replacement and renal failure worldwide. Mutations in PKD1 or PKD2 cause ADPKD. Patients with ADPKD show progressive growth of renal cysts filled with cystic fluid, leading to end-stage renal disease (ESRD) and renal failure by their sixth decade of life. Currently, there are no curative treatments for ADPKD. Therefore, patients require dialysis or kidney transplantation. To date, researchers have elucidated many of the mechanisms that cause ADPKD and developed many methods to diagnose the disease. ADPKD is related to growth factors, signaling pathways, cell proliferation, apoptosis, inflammation, the immune system, structural abnormalities, epigenetic mechanisms, microRNAs, and so on. Various therapies have been reported to slow the progression of ADPKD and alleviate its symptoms.


ADPKD Polycystic kidney Cyst Renal failure ESRD Pathogenesis Disease mechanism 


  1. Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, Muller CA, Kalluri R, Zeisberg M (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16(5):544–550. doi: 10.1038/nm.2135 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bell PD, Fitzgibbon W, Sas K, Stenbit AE, Amria M, Houston A, Reichert R, Gilley S, Siegal GP, Bissler J, Bilgen M, Chou PC, Guay-Woodford L, Yoder B, Haycraft CJ, Siroky B (2011) Loss of primary cilia upregulates renal hypertrophic signaling and promotes cystogenesis. J Am Soc Nephrol 22(5):839–848. doi: 10.1681/ASN.2010050526 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Buchholz B, Klanke B, Schley G, Bollag G, Tsai J, Kroening S, Yoshihara D, Wallace DP, Kraenzlin B, Gretz N, Hirth P, Eckardt KU, Bernhardt WM (2011) The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis. Nephrol Dial Transplant 26(11):3458–3465. doi: 10.1093/ndt/gfr432 CrossRefPubMedGoogle Scholar
  4. Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292(3):F905–F911. doi: 10.1152/ajprenal.00421.2006 CrossRefPubMedGoogle Scholar
  5. Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, Piontek KB, Germino GG, Pandolfi PP, Boletta A (2009) Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol 29(9):2359–2371. doi: 10.1128/MCB.01259-08 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Du J, Wilson PD (1995) Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am J Physiol 269(2 Pt 1):C487–C495PubMedGoogle Scholar
  7. Ekser B, Rigotti P (2010) Images in clinical medicine. Autosomal dominant polycystic kidney disease. N Engl J Med 363(1):71. doi: 10.1056/NEJMicm0905399 CrossRefPubMedGoogle Scholar
  8. Elliott J, Zheleznova NN, Wilson PD (2011) c-Src inactivation reduces renal epithelial cell-matrix adhesion, proliferation, and cyst formation. Am J Physiol Cell Physiol 301(2):C522–C529. doi: 10.1152/ajpcell.00163.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fedeles SV, Gallagher AR, Somlo S (2014) Polycystin-1: a master regulator of intersecting cystic pathways. Trends Mol Med 20(5):251–260. doi: 10.1016/j.molmed.2014.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Garcia-Gonzalo FR, Reiter JF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197(6):697–709. doi: 10.1083/jcb.201111146 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805. doi: 10.1038/35099066 CrossRefPubMedGoogle Scholar
  12. Gregoire JR, Torres VE, Holley KE, Farrow GM (1987) Renal epithelial hyperplastic and neoplastic proliferation in autosomal dominant polycystic kidney disease. Am J Kidney Dis 9(1):27–38CrossRefPubMedGoogle Scholar
  13. Hassane S, Leonhard WN, van der Wal A, Hawinkels LJ, Lantinga-van Leeuwen IS, ten Dijke P, Breuning MH, de Heer E, Peters DJ (2010) Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J Pathol 222(1):21–31. doi: 10.1002/path.2734 PubMedGoogle Scholar
  14. Hildebrandt F, Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6(12):928–940. doi: 10.1038/nrg1727 CrossRefPubMedGoogle Scholar
  15. Hou X, Mrug M, Yoder BK, Lefkowitz EJ, Kremmidiotis G, D’Eustachio P, Beier DR, Guay-Woodford LM (2002) Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 109(4):533–540. doi: 10.1172/JCI14099 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10(2):151–160. doi: 10.1038/ng0695-151 CrossRefPubMedGoogle Scholar
  17. Karihaloo A, Koraishy F, Huen SC, Lee Y, Merrick D, Caplan MJ, Somlo S, Cantley LG (2011) Macrophages promote cyst growth in polycystic kidney disease. J Am Soc Nephrol 22(10):1809–1814. doi: 10.1681/ASN.2011010084 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Katz SK, Hakki A, Miller AS, Finkelstein SD (1989) Ultrastructural tubular basement membrane lesions in adult polycystic kidney disease. Ann Clin Lab Sci 19(5):352–359PubMedGoogle Scholar
  19. Lakhia R, Hajarnis S, Williams D, Aboudehen K, Yheskel M, Xing C, Hatley ME, Torres VE, Wallace DP, Patel V (2015) MicroRNA-21 aggravates cyst growth in a model of polycystic kidney disease. J Am Soc Nephrol. doi: 10.1681/ASN.2015060634 PubMedGoogle Scholar
  20. LaRiviere WB, Irazabal MV, Torres VE (2015) Novel therapeutic approaches to autosomal dominant polycystic kidney disease. Transl Res 165(4):488–498. doi: 10.1016/j.trsl.2014.11.003 CrossRefPubMedGoogle Scholar
  21. Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A, Larusso N (2008) MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest 118(11):3714–3724. doi: 10.1172/JCI34922 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li X (2011) Epigenetics and autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1812(10):1213–1218. doi: 10.1016/j.bbadis.2010.10.008 CrossRefPubMedGoogle Scholar
  23. Mangos S, Lam PY, Zhao A, Liu Y, Mudumana S, Vasilyev A, Liu A, Drummond IA (2010) The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech 3(5–6):354–365. doi: 10.1242/dmm.003194 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Martinez JR, Grantham JJ (1995) Polycystic kidney disease: etiology, pathogenesis, and treatment. Dis Mon 41(11):693–765CrossRefPubMedGoogle Scholar
  25. Nakamura T, Ushiyama C, Suzuki S, Ebihara I, Shimada N, Koide H (2000) Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am J Nephrol 20(1):32–36. doi:13552CrossRefPubMedGoogle Scholar
  26. Omori S, Hida M, Fujita H, Takahashi H, Tanimura S, Kohno M, Awazu M (2006) Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J Am Soc Nephrol 17(6):1604–1614. doi: 10.1681/ASN.2004090800 CrossRefPubMedGoogle Scholar
  27. Patel V, Williams D, Hajarnis S, Hunter R, Pontoglio M, Somlo S, Igarashi P (2013) miR-17 ~ 92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A 110(26):10765–10770. doi: 10.1073/pnas.1301693110 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Paul BM, Vanden Heuvel GB (2014) Kidney: polycystic kidney disease. Wiley Interdiscip Rev Dev Biol 3(6):465–487. doi: 10.1002/wdev.152 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, Grimmond SM, Hume DA, Ricardo SD, Little MH (2007) Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol 308(1):232–246. doi: 10.1016/j.ydbio.2007.05.027 CrossRefPubMedGoogle Scholar
  30. Renken C, Fischer DC, Kundt G, Gretz N, Haffner D (2011) Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol Dial Transplant 26(1):92–100. doi: 10.1093/ndt/gfq384 CrossRefPubMedGoogle Scholar
  31. Rossetti S, Strmecki L, Gamble V, Burton S, Sneddon V, Peral B, Roy S, Bakkaloglu A, Komel R, Winearls CG, Harris PC (2001) Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet 68(1):46–63. doi: 10.1086/316939 CrossRefPubMedGoogle Scholar
  32. Shibazaki S, Yu Z, Nishio S, Tian X, Thomson RB, Mitobe M, Louvi A, Velazquez H, Ishibe S, Cantley LG, Igarashi P, Somlo S (2008) Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum Mol Genet 17(11):1505–1516. doi: 10.1093/hmg/ddn039 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103(14):5466–5471. doi: 10.1073/pnas.0509694103 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18(13):2328–2343. doi: 10.1093/hmg/ddp165 CrossRefPubMedGoogle Scholar
  35. Spirli C, Okolicsanyi S, Fiorotto R, Fabris L, Cadamuro M, Lecchi S, Tian X, Somlo S, Strazzabosco M (2010) ERK1/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice. Gastroenterology 138(1):360–371. e367.  10.1053/j.gastro.2009.09.005 CrossRefPubMedGoogle Scholar
  36. Sun L, Zhu J, Wu M, Sun H, Zhou C, Fu L, Xu C, Mei C (2015) Inhibition of MiR-199a-5p reduced cell proliferation in autosomal dominant polycystic kidney disease through targeting CDKN1C. Med Sci Monit 21:195–200. doi:10.12659/MSM.892141CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sweeney WE Jr, von Vigier RO, Frost P, Avner ED (2008) Src inhibition ameliorates polycystic kidney disease. J Am Soc Nephrol 19(7):1331–1341. doi: 10.1681/ASN.2007060665 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Swenson-Fields KI, Vivian CJ, Salah SM, Peda JD, Davis BM, van Rooijen N, Wallace DP, Fields TA (2013) Macrophages promote polycystic kidney disease progression. Kidney Int 83(5):855–864. doi: 10.1038/ki.2012.446 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Talbot JJ, Song X, Wang X, Rinschen MM, Doerr N, LaRiviere WB, Schermer B, Pei YP, Torres VE, Weimbs T (2014) The cleaved cytoplasmic tail of polycystin-1 regulates Src-dependent STAT3 activation. J Am Soc Nephrol 25(8):1737–1748. doi: 10.1681/ASN.2013091026 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tan YC, Blumenfeld J, Rennert H (2011) Autosomal dominant polycystic kidney disease: genetics, mutations and microRNAs. Biochim Biophys Acta 1812(10):1202–1212. doi: 10.1016/j.bbadis.2011.03.002 CrossRefPubMedGoogle Scholar
  41. Tao Y, Kim J, Schrier RW, Edelstein CL (2005) Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16(1):46–51. doi: 10.1681/ASN.2004080660 CrossRefPubMedGoogle Scholar
  42. Wallace DP, Quante MT, Reif GA, Nivens E, Ahmed F, Hempson SJ, Blanco G, Yamaguchi T (2008) Periostin induces proliferation of human autosomal dominant polycystic kidney cells through alphaV-integrin receptor. Am J Physiol Renal Physiol 295(5):F1463–F1471. doi: 10.1152/ajprenal.90266.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Weimbs T (2007) Polycystic kidney disease and renal injury repair: common pathways, fluid flow, and the function of polycystin-1. Am J Physiol Renal Physiol 293(5):F1423–F1432. doi: 10.1152/ajprenal.00275.2007 CrossRefPubMedGoogle Scholar
  44. Weimbs T (2011) Third-hit signaling in renal cyst formation. J Am Soc Nephrol 22(5):793–795. doi: 10.1681/ASN.2011030284 CrossRefPubMedGoogle Scholar
  45. Wilson PD, Burrow CR (1999) Cystic diseases of the kidney: role of adhesion molecules in normal and abnormal tubulogenesis. Exp Nephrol 7(2):114–124. doi:20592CrossRefPubMedGoogle Scholar
  46. Wilson PD, Norman JT, Kuo NT, Burrow CR (1996) Abnormalities in extracellular matrix regulation in autosomal dominant polycystic kidney disease. Contrib Nephrol 118:126–134CrossRefPubMedGoogle Scholar
  47. Wilson PD, Geng L, Li X, Burrow CR (1999) The PKD1 gene product, “polycystin-1,” is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Invest 79(10):1311–1323PubMedGoogle Scholar
  48. Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24(1):75–78. doi: 10.1038/71724 CrossRefPubMedGoogle Scholar
  49. Yamaguchi T, Reif GA, Calvet JP, Wallace DP (2010) Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol 299(5):F944–F951. doi: 10.1152/ajprenal.00387.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ye M, Grantham JJ (1993) The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med 329(5):310–313. doi: 10.1056/NEJM199307293290503 CrossRefPubMedGoogle Scholar
  51. Zeltner R, Hilgers KF, Schmieder RE, Porst M, Schulze BD, Hartner A (2008) A promoter polymorphism of the alpha 8 integrin gene and the progression of autosomal-dominant polycystic kidney disease. Nephron Clin Pract 108(3):c169–c175. doi: 10.1159/000116887 CrossRefPubMedGoogle Scholar
  52. Zhou J (2009) Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 71:83–113. doi: 10.1146/annurev.physiol.70.113006.100621 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Molecular Medicine Laboratory, Department of Life systemsSookmyung Women’s UniversitySeoulSouth Korea
  2. 2.Department of Life systemsSookmyung Women’s UniversitySeoulSouth Korea

Personalised recommendations