Skip to main content

Problems and Prospects of Crops with Changing Temperature

  • 888 Accesses

Abstract

As soil organic matter decomposes, CO2 is released back into the atmosphere, which could further exacerbate additional global warming (Carney et al. 2007). The decomposition is faster in the summer and slow in the winter. Soil has a relatively large capacity to store energy, and therefore, soil temperature does not change rapidly. The temperature manipulation experiments (Rustad et al. 2001) have shown that the rate of soil respiration increases with warmer temperatures and demonstrated a significant positive relationship between temperature and soil respiration. The magnitude of the response of soil respiration to warming was greater in colder and high-altitude ecosystems.

Keywords

  • Heat Stress
  • Soil Respiration
  • Glycine Betaine
  • Small Heat Shock Protein
  • Rubisco Activase

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-2004-9_2
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-2004-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)

References

  • Aggarawal PK (2008) Global climate change and Indian agriculture: impacts, adaptation and mitigation. Indian J Agric Sci 78:911–919

    Google Scholar 

  • Al Khatib K, Poulson GM (1999) High temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Sci 39:119–125

    CrossRef  Google Scholar 

  • Alexandrov VA (1997) Vulnerability of agronomic systems in Bulgaria. Climate Change 36:135–149

    CrossRef  Google Scholar 

  • Allen LH Jr, Vu JCV, Valle RR et al (1988) Nonstructural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop Sci 28:84–94

    CrossRef  Google Scholar 

  • Arrigo AP, Landry J (1994) 14 expression and function of the low-molecular-weight heat shock proteins. Cold Spring Harb Monogr Arch 26:335–373

    CAS  Google Scholar 

  • Atkinson BG, Raizada M, Bouchard RA et al (1993) The independent stage specific expression of the 18-kDA heat shock protein genes during microsporogenesis in Zea mays L. Dev Genet 14:15–26

    CAS  CrossRef  Google Scholar 

  • Bagga AK, Rawson HM (1977) Contrasting responses of morphologically similar wheat cultivars to temperatures appropriate to warm temperate climates with hot summers: a study in controlled environment. Aust J Plant Physiol 4:877–887

    CrossRef  Google Scholar 

  • Baker JT, Allen LH Jr, Boole KJ et al (1989) Response of soybean to air temperature and carbon dioxide concentration. Crop Sci 29:98–105

    CrossRef  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID et al (2002) Herbivory in global climate research: direct effect on rising temperature on insect herbivores. Glob Change Biol 8:1–16

    CrossRef  Google Scholar 

  • Battisti A, Stastny M, Netherer S et al (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15(5):2084–2096

    CrossRef  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196

    CrossRef  Google Scholar 

  • Bhattacharya S, Bhattacharya NC, Biswas PK et al (1985) Response of cow pea (Vigna unguiculata L.) to CO2 enrichment environment on growth, dry matter production and yield components at different stages of vegetative and reproductive growth. J Agric Sci 105:527–534

    CrossRef  Google Scholar 

  • Bhoomi Raj K, Chakrabarti B, Aggarwal PK et al (2010) Assessing the vulnerability of Indian mustard to climate change. Agric Ecosyst Environ 138:265–273

    CrossRef  Google Scholar 

  • Boag B, Crawford JW, Neilson R (1991) The effect of potential climatic changes on the geographical distribution of the plant-parasitic nematodes xiphinema and longidorus in Europe. Nematologica 37(1):312–323

    CrossRef  Google Scholar 

  • Bohnert HJ, Gong Q, Li P (2006) Unraveling abiotic stress tolerance mechanisms: getting genomics going. Curr Opin Plant Biol 9:180–188

    CAS  CrossRef  Google Scholar 

  • Bunce JA, Ziska LH (2000) Crop ecosystem responses to climate change. In: Reddy KR, Hidges HF (eds) Crop/weed interactions: climate change and global crop productivity, CAB International, pp 333–352

    Google Scholar 

  • Burkee JJ, Mahan JR, Hatfield JL (1988) Crop specific thermal kinetic windows in relation to wheat and cotton biomass production. Agron J 80:553–556

    CrossRef  Google Scholar 

  • Byjesh K, Naresh Kumar S, Aggrawal PK (2010) Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. Mitig Adapt Strat Glob Chang 15:413–431

    CrossRef  Google Scholar 

  • Camejo D, Rodiguez P, Morales MA et al (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    CAS  CrossRef  Google Scholar 

  • Carney KM, Hungate BA, Drake BG et al (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci 104:4990–4995

    CAS  CrossRef  Google Scholar 

  • Chander S (1998) Infestation of root and foliage/earhead aphids on wheat in relation to predators. Indian J Agric Sci 68(11):754–755

    Google Scholar 

  • Chander S, Phadke KG (1994) Incidence of mustard aphid, Lipaphis erysimi and potato aphid, Myzus persicae on rapeseed crop. Ann Agric Res 15(3):385–387

    Google Scholar 

  • Chander S, Singh VS, Kalra N (2003) Aphid infestation on barley in relation to climate variability. In: Proceedings of the national symposium on frontier areas of entomological research. IARI, New Delhi, pp 37–38

    Google Scholar 

  • Craufurd RQ, Wheeler TR (2009) Climate change and flowering time of annual crops. J Expt Bot 60:2529–2539

    CAS  CrossRef  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Ann Rev Phytopathol 37:399–426

    CAS  CrossRef  Google Scholar 

  • De Ronde JAD, Cress WA, Kruger GHJ et al (2004) Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 61:1211–1244

    CrossRef  CAS  Google Scholar 

  • Egeh AO, Ingram KT, Zamora OB (1994) High temperature effects on leaf exchange. Philipp J Crop Sci 17:21–26

    Google Scholar 

  • Frova C, Sari Gorla M (1994) Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol Genet Genomics 245:424–450

    CAS  CrossRef  Google Scholar 

  • Gifford RM (1977) Growth pattern, CO2 exchance and dry weight distribution in wheat growing under different photosynthetic environments. Aust J Plant Physiol 4:99–110

    CAS  CrossRef  Google Scholar 

  • Gifford RM (1989) Trees in the global greenhouse. Their role and potential. Trees Nat Resour 31:9–11

    Google Scholar 

  • Hall AE (1992) Breeding for heat tolerance. Plant Breed Rev 10:129–168

    Google Scholar 

  • Hance T, Baaren J, Vanvernon P et al (2007) Impact of extreme temperatures on parasitoides in a climate change perspective. Ann Rev Entomol 52:107–126

    CAS  CrossRef  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2008) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    CrossRef  CAS  Google Scholar 

  • Hesketh JD, Hellmers H (1973) Floral initiation in four plant species growing in CO2 enriched air. Environ Control Biol 11:51–53

    CrossRef  Google Scholar 

  • Hill DS (1987) Agricultural insects, pests of temperate regions and their control. Cambridge University Press, Cambridge, p 659

    Google Scholar 

  • Hopkin K (2008) Plants don’t like greenhouse effect. http://www.scientificamerican.com/podcast/episode/12c9008d-fb71-7c7b-ebadb04daeb4356c/. Accessed 25 Feb 2016

  • Horton P (2002) Crop improvement through alteration in the photosynthetic membrane, ISB news report. Virginia Tech, Blacksburg

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    CrossRef  Google Scholar 

  • Idso SB, Kimball BA, Mauni JR (1987) Atmospheric carbon dioxide enrichment effects on cotton mid day foliage temperature: implications for plant water use and crop yield. Agron J 79:667–672

    CrossRef  Google Scholar 

  • Imai K, Coleman DF, Yanagisawa T (1985) lncrease in atmospheric partial prssure of carbon dioxide on growth and yield of rice (Oryza sativa). Jpn J Crop Sci 53:413–418

    CrossRef  Google Scholar 

  • IPCC (International Panel on Climate Change) (2007) Summary for policy makers. In: Parry ML et al (eds) Climate change 2007: impacts, adaptation and vulnerability, contribution of working group ll to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Iqbal M, Khan R, Asgher M et al (2013) Rising temperature in the changing environment: a serious threat to plants. Clim Chang Environ Sustain 1:25–36

    CrossRef  Google Scholar 

  • June T, Evans JR, Farquhar GD (2004) A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Funct Plant Biol 31:275–283

    CAS  CrossRef  Google Scholar 

  • Kendall AC, Turner JC, Thomas SM (1985) Effects of CO2 enrichment at different irradiances on growth and yield of wheat. I, Effects of cultivar and duration of CO2 enrichment. J Exp Bot 36:252–260

    CrossRef  Google Scholar 

  • Kokic P, Crimp S, Howdon M (2014) A probabilistic analysis of human influence on recent record global mean temperature changes. Clim Risk Manage 3:1–12

    CrossRef  Google Scholar 

  • Krenzer EG, Moss DN (1975) Carbon dioxide enrichment effects upon yield and yield components in wheat. Crop Sci 15:71–74

    CAS  CrossRef  Google Scholar 

  • Krishnan P, Swain DK, Basker C et al (2007) Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric Ecosyst Environ 122(2):233–242

    CrossRef  Google Scholar 

  • Kunst L, Browse J, Somerville C (1989) Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid unsaturation. Plant Physiol 91:401–408

    CAS  CrossRef  Google Scholar 

  • Kureck I, Chang TK, Bertain SM et al (2007) Enhanced thermostability of arabidopsis rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    CrossRef  CAS  Google Scholar 

  • Lal M, Singh KK, Rathore LS et al (1998) Vulnerability of rice and wheat yields in NW India to future changes in climate. Agric Forest Meteorol 89:101–114

    CrossRef  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and anti oxidant systems in agrostis stolonifera. Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide and ethylene. J Plant Physiol 161:405–413

    CAS  CrossRef  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol 128:682–695

    CAS  CrossRef  Google Scholar 

  • Lecain D, Smith D, Morgan J et al (2015) Microclimatic performance of a free air warming and CO2 enrichment experiment in Windy Wyoming, USA. PLOS one 6:1–14. doi:10.1371/journal.pone.0116834

    Google Scholar 

  • Lee PC, Bochner BR, Ames BN (1983) A heat shock stress and cell oxidation. Proc Natl Acad Sci 80:7496–7500

    CAS  CrossRef  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    CAS  CrossRef  Google Scholar 

  • Lenne C, Douce R (1994) A low molecular mass heat-shock protein is localized to higher plant mitochondria. Plant Physiol 105:1255–1261

    CAS  Google Scholar 

  • Lewis T (1997) Thrips as crop pests. CAB International, Oxon

    Google Scholar 

  • Luo C, Xu G, Chao Z et al (2010) Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Glob Change Biol 16:1606–1617

    CrossRef  Google Scholar 

  • Maheswari M, Joshi DK, Saha R et al (1999) Transverse relaxation time of leaf water protons and membrane injury in wheat (Triticum aestivum L.) in response to high temperature. Ann Bot 84:741–745

    CAS  CrossRef  Google Scholar 

  • Mishra RK, Singhal GS (1992) Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with thylakoid lipids. Plant Physiol 98:1–6

    CAS  CrossRef  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  CrossRef  Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y (2000) Trienoic fatty acids and plant tolerance for high temperature. Science 287:476–479

    CAS  CrossRef  Google Scholar 

  • O’Donnell CC, Adkins SW (2001) Wild oat and climate change: the effect of CO2 concentration, temperature, and water deficit on the growth and development of wild oat in monoculture. Weed Sci 49(5):694–702

    CrossRef  Google Scholar 

  • Olesen JE, Jensen T, Petersen J (2000) Sensitivity of field-scale winter wheat production in Denmark to climate variability and climate change. Clim Res 15:221–238

    CrossRef  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phonological response to global warming. Global Change Biol 13:1860–1872

    CrossRef  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  CrossRef  Google Scholar 

  • Parry DA, Amaranthus MP, Borchers JG et al (1989) Boot strapping in ecosystems. Bioscience 39:230–237

    CrossRef  Google Scholar 

  • Patterson DT (1995) Weeds in a changing climate. Weed Sci 43:685–701

    CAS  Google Scholar 

  • Pinnschmidt HO, Batchelor WD, Teng PS (1995) Simulation of multiple species pest damage on rice. Agric Syst 48:193–222

    CrossRef  Google Scholar 

  • Plesofsky-Vig N, Paulson A, Hill EP et al (1992) Heat shock gene expression in germinating ascospores of Neurospora tetrasperma. FEMS Microbiol Lett 90:117–122

    CAS  CrossRef  Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman and Hall, London

    Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climate variation. Philos Trans Royal Soc 360:2021–2035

    CrossRef  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr (2002) Effects of elevated temperature and carbon dioxide on seed set and yield of kidney bean (Phaseolus vulgaris L.). Glob Change Biol 8:710–721

    CrossRef  Google Scholar 

  • Prasad PV, Boote KJ, Allen LH Jr et al (2003) Super optimal temperatures are detrimental to peanut (Arachis hypogea) reproductive processes and seed yield at both ambient and elevated carbon dioxide. Glob Change Biol 9:1775–1787

    CrossRef  Google Scholar 

  • Rao BVR, Rao MR (1996) Weather effects on pests. In: Abrol YP, Gadgil S, Pant GB (eds) Climate variability and agriculture. Narosa Publication House, New Delhi, pp 281–296

    Google Scholar 

  • Reddy KR, Hodges HF, Kimball BA (2000) Crop ecosystem response to climate change: cotton In: Reddy KR (eds) Climate change and global crop productivity. CAB International, pp 161–187

    Google Scholar 

  • Rekika D, Nachit MM, Monneveux P (1997) Comparative osmotic adjustments in barley and tetraploid wheats. Plant Breed 116(6):519–523

    CrossRef  Google Scholar 

  • Rikin A, Dillworth JW, Bergman DK (1993) Correlation between circadian rhythm of resistance to extreme temperature and changes in fatty acid composition in cotton seedlings. Plant Physiol 101:31–36

    CAS  Google Scholar 

  • Root TL, Price JT, Hall KR et al (2003) Finger prints of global warming on wild animals and plants. Nature 421:57–60

    CAS  CrossRef  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM et al (2001) A meta analysis of the response of soil respiration, net nitrogen mineralization and above ground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    CrossRef  Google Scholar 

  • Sage RF, Kubian DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    CAS  CrossRef  Google Scholar 

  • Saini HS, Aspinall D (1982) Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short period of high temperature. Ann Bot 49:835–846

    Google Scholar 

  • Sakata T, Oshino T, Miura S (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci 107(19):8569–8574

    CAS  CrossRef  Google Scholar 

  • Salvucci ME (2008) Association of Rubisco activase with chaperonin-60beta; a possible mechanism for protecting photosynthesis during heat stress. J Exp Bot 59:1923–1933

    CAS  CrossRef  Google Scholar 

  • Samara JS, Singh G (2004) Heat wave of March, 2004: impact on agriculture, Indian council of agricultural research, p 32

    Google Scholar 

  • Santarius KA (1973) The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta 113:105–114

    CAS  CrossRef  Google Scholar 

  • Satake T, Yoshida S (1978) High temperature induced sterility in Indica rice at flowering. Jpn J Crop Sci 47:6–10

    CrossRef  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF (2004) Thylakoid membrane responses to moderately high leaf temperature in Prima cotton. Plant Cell Environ 27(6):725–735

    CAS  CrossRef  Google Scholar 

  • Serraj R, Sinclair TR, Allen LH (1998) Soybean nodulation and N2 fixation response to drought under carbon dioxide enrichment. Plant Cell Environ 21:491–500

    CrossRef  Google Scholar 

  • Sionit N, Strain BR, Flint EP (1987) Interactions of temperature and CO2 enrichment on soybean: Growth and dry matter partitioning. Can J Plant Sci 67:59–67

    CAS  CrossRef  Google Scholar 

  • Sirotenko OD, Abashina HV, Pavlova VN (1997) Sensitivity of the Russian agriculture to changes in climate, CO2 and tropospheric ozone concentrations and soil fertility. Climate Change 36:217–232

    CAS  CrossRef  Google Scholar 

  • Somerville C, Browse J (1991) Plant lipids, metabolism and membranes. Science 252:80–87

    CAS  CrossRef  Google Scholar 

  • Southerst RW, Yonow T, Chakraborty S (1996) A generic approach to defining impacts of climate change on pests, weeds and diseases in Australasia. In: Bouma WJ (ed) Greenhouse coping with climate change. CSIRO, Collingwood, pp 281–307

    Google Scholar 

  • Srivastava A, Naresh kumar S, Aggarwal PK (2010) Assessment on vulnerability of sorghum to climate change in India. Agric Ecosyst Environ 138:160–169

    CrossRef  Google Scholar 

  • Stastny M, Battisti A, Petrucco Toffolo E (2006) Host plant use in the range expansion of the pine processionary moth Thaumetopoea pityocampa. Ecol Entomol 31:481–490

    CrossRef  Google Scholar 

  • Sujatha KB, Uprety DC, Nageswara Rao D (2008) Up regulation of photosynthesis and sucrose-P synthase in rice under elevated carbon dioxide and temperature conditions. Plant Soil Environ 54:155–162

    CAS  Google Scholar 

  • Sutherst RW, Yonow T, Chakraborty S et al (1996) A generic approach to defining impacts of climate change on pests, weeds and diseases in Australasia. In: Bouma WJ et al (eds) Greenhouse, coping with climate change. CSIRO, Melbourne, pp 281–307

    Google Scholar 

  • Teng PS, Yang XB (1993) Biological impact and risk assessment in plant pathology. Ann Rev Phytopathol 31:495–521

    CrossRef  Google Scholar 

  • Thomas JA, Telfer MG, Roy DB et al (2004) Comparative losses of British butterflies, birds and plants and the global extinction crisis. Science 303:1879–1881

    CAS  CrossRef  Google Scholar 

  • Tiroli-Cepeda AO, Ramos CH (2010) Heat causes oligomeric disassembly and increases the chaperone activity of small heat shock proteins from sugarcane. Plant Physiol Biochem 48(2–3):108–116

    CAS  CrossRef  Google Scholar 

  • Tubiello FN, Donatelli M, Rosenzweig C et al (2000) Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur J Agron 13:179–189

    CrossRef  Google Scholar 

  • Upadhyay A, Davis TD, Larson MH et al (1990) Uniconazole induced thermotolerance in soybean seedling root tissue. Physiol Planta 79:78–84

    CrossRef  Google Scholar 

  • Upadhyay A, Davis TD, Sankhla M (1991) Heat shock tolerance and anti oxidant activity in moth bean seedlings treated with tetayclasis. Plant Growth Regul 10:215–222

    CrossRef  Google Scholar 

  • Uprety DC, Dwivedi N, Raj A et al (2009) Study on the response of diploid, tetraploid and hexaploid species of wheat to the elevated CO2. Physiol Mol Biol Plants 15(2):161–168

    CAS  CrossRef  Google Scholar 

  • Uprety DC, Garg SC, Tiwari MK et al (2000) Crop responses to elevated CO2Technology and Research (Indian studies). Global Environ Res 3:155–167

    CAS  Google Scholar 

  • Uprety DC, Mishra RS, Abrol YP (1995) Effect of elevated CO2 and moisture stress on the photosynthesis and water relation in Brassica species. J Crop Sci Agron 175:231–237

    CAS  CrossRef  Google Scholar 

  • Van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55

    CrossRef  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    CAS  CrossRef  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    CAS  CrossRef  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrin under heat stress and their relationship with water relations of sugar cane leaves. Biol Planta 51:104–109

    CAS  CrossRef  Google Scholar 

  • Wahid A, Gilani S, Ashraf M (2007) Heat tolerance in plants: an overview. Environ Expt Bot 61:199–223

    CrossRef  Google Scholar 

  • Wall GW, Mclain ET, Kimball BA (2013) Infrared warming effects intra row soil CO2 efflux during vegetative growth of spring wheat. Agron J 105:607–618

    CrossRef  Google Scholar 

  • Walther GR, Post E, Convey P (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    CAS  CrossRef  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM et al (2004) Electron transport is the functional limitation of photosynthesis in field grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    CAS  CrossRef  Google Scholar 

  • Wolf RB, Cavins JF, Kleiman R (1982) Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids and sugars. J Am Oil Chem Soc 59:230–232

    CAS  CrossRef  Google Scholar 

  • Wolf J (2000) Modelling climate change impacts at the site scale on soybean. In: Downing TE, Harrison PA, Butterfield RE et al (eds) Climate change, climatic variability and agriculture in Europe, environ-mental change unit. University of Oxford, Oxford, pp 103–116

    Google Scholar 

  • Xu Q, Paulson AQ, Guikema JA et al (1995) Functional and ultrastructural injury to the photosynthesis in wheat by high temperature during maturation. Environ Expt Bot 35:43–54

    CrossRef  Google Scholar 

  • Yang J, Sears RG, Gill BS et al (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:75–282

    Google Scholar 

  • Yousfi N, Slama I, Ghnaya T et al (2010) Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. C R Biol 333(3):205–213

    CAS  CrossRef  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O et al (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Uprety, D.C., Reddy, V.R. (2016). Problems and Prospects of Crops with Changing Temperature. In: Crop Responses to Global Warming. Springer, Singapore. https://doi.org/10.1007/978-981-10-2004-9_2

Download citation