Advertisement

Nonlinear Behaviour of Quasicrystals

  • Tian-You FanEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 246)

Abstract

From Chaps.  4 to  13, we mainly discussed the elasticity and relevant properties of quasicrystals, which belong to linear regime both physically and mathematically. Their mathematical treatment is relatively easy though the calculations are quite complex.

Keywords

Energy Release Rate Classical Plasticity Icosahedral Quasicrystal Decagonal Quasicrystal Linear Elastic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Messerschmidt U, 2010, Dislocation Dynamics during Plastic Deformation, Springer-Verlag, Heidelberg.Google Scholar
  2. 2.
    Geyer B, Bartisch M, Feuerbacher M et al, 2000, Plastic deformation of icosahedral Al-Pd-Mn single quasicrystals, I. Experimental results, Phil. Mag. A, 80(7), 1151-1164.Google Scholar
  3. 3.
    Messerschmidt U, Bartisch M, Geyer B et al, 2000, Plastic deformation of icosahedral Al-Pd-Mn single quasicrystals, II, Interpretation of experimental results, Phil. Mag. A, 80(7), 1165-1181.Google Scholar
  4. 4.
    Urban K and Wollgarten M, 1994, Dislocation and plasticity of quasicrystals, Materials Sci. Forum, 150-151(2), 315-322.Google Scholar
  5. 5.
    Wollgarten M et al, 1995, In-situ observation of dislocation motion in icosahedral Al-Pd-Mn single quasicrystals, Phil. Mag. Lett., 71(1), 99-105.Google Scholar
  6. 6.
    Feuerbacher M, Bartsch B, Grushk B et al, 1997, Plastic deformation of decagonal Al-Ni-Co quasicrystals, Phil. Mag. Lett., 76(4), 396-375.Google Scholar
  7. 7.
    Messerschmidt U, Bartsch M, Feuerbacher M, et al, Friction mechanism of dislocation motion in icosahedral Al-Pd-Mn single quasicrystals, Phil. Mag. A, 79(11), 2123-2135.Google Scholar
  8. 8.
    Fan T Y, Trebin H-R, Messerschmidt U and Mai Y W, 2004, Plastic flow coupled with a Griffith crack in some one- and two-dimensional quasicrystals, J. Phys.: Condens. Matter, 16(47), 5229-5240..Google Scholar
  9. 9.
    Feuerbacher M and Urban K, 2003, Platic behaviour of quasicrystalline materials, in : Quasicrystals, ed. by Trebin H R, Wiley Press, Berlin.Google Scholar
  10. 10.
    Guyot P and Canova G, 1999, The plasticity of icosahedral quasicrystals, Phil. Mag. A, 79(11), 2815-2822.Google Scholar
  11. 11.
    Feuerbacher M, Schall P, Estrin Y et al, 2001, A constitutive model for quasicrystal plasticity, Phil. Mag.Lett, 81(7), 473-482 .Google Scholar
  12. 12.
    Estrin Y, 1996, in: Unified Constitutive Laws of Plastic Deformation, ed. by Krausz A and Krausz K, Academic Press, New York.Google Scholar
  13. 13.
    Eshelby J D, 1956, The continuum theory of dislocations in crystals, Solid State Physics (Ed. by Seits F et al), Vol. 3, New York: Academic Press.Google Scholar
  14. 14.
    Fan T Y and Fan L, 2008, Plastic fracture of quasicrystals, Phil. Mag., 88(4), 523-535.Google Scholar
  15. 15.
    Dugdale D S, 1960, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 32(2), 105-108.Google Scholar
  16. 16.
    Barenblatt G I, 1962, The mathematical theory of equilibrium of crack in brittle fracture, Advances in Applied Mechanics, Vol. 7, 55-129.Google Scholar
  17. 17.
    Fan T Y and Mai Y W, 2004, Elasticity theory, fracture mechanics and some relevant thermal properties of quasicrystalline materials, Appl. Mech. Rev., 57(5), 325-344.Google Scholar
  18. 18.
    Fan T Y and Fan L, 2011, Relation between Eshelby integral and generalized BCS and generalized DB models for some one- and two-dimensional quasicrystals, Chin. Phys. B, 20(4),036102.Google Scholar
  19. 19.
    Mong X M, Tong B Y and Wu Y K, 1994, Mechanical properties of quasicrystals \( Al_{65} Cu_{20} Co_{15} \), Acta Metallurgica Sinica, A, 30(3), 61-64. (in Chinese).Google Scholar
  20. 20.
    Bilby B A, Cottrell A H and Swinden K H, 1963, The spread of plastic yield from a notch, Proc. R. Soc. A, 272 (2), 304-314.Google Scholar
  21. 21.
    Bilby B A, Cottrell A H, Smith E et al, 1964, Plastic yielding from sharp notches, ibid, 279 (1), 1-9.Google Scholar
  22. 22.
    Rice J R, 1968, A path independent integral and approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35(4), 379-386.Google Scholar
  23. 23.
    Cherepanov G P, 1969, On crack propagation in solids, Int. J. Solids and Structures, 5(8), 863-871.Google Scholar
  24. 24.
    Begley G T and Landes J D, 1972, The J-integral as a fracture criterion, Fracture Toughness, ASTM STP 514, American Society for Testing and Materials, Philadelphia, 1-20.Google Scholar
  25. 25.
    Landes J D and Begley G T, 1972, The effect of specimen geometry on \( J_{IC} \), Fracture Toughness, ASTM STP 514, American Society for Testing and Materials, Philadelphia, 24-29.Google Scholar
  26. 26.
    Muskhelishvili N I, 1956, Singular Integral Equations, English translation by Radok J R M, Noordhoff, Groningen.Google Scholar
  27. 27.
    Li W and Fan T Y, 2009, Study on plastic analysis of crack problem of three-dimensional quasicrystalline materials, Phil. Mag, 89(31), 2823-2831.Google Scholar

Copyright information

© Science Press and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Beijing Institute of TechnologyBeijingChina

Personalised recommendations