Advertisement

Universal Fuzzy Models and Universal Fuzzy Controllers for Stochastic Non-affine Nonlinear Systems

  • Qing GaoEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter discusses the problem of universal fuzzy models and universal fuzzy controllers for stochastic non-affine nonlinear systems. The underlying mechanism of stochastic fuzzy logic is first discussed and a stochastic generalized fuzzy model with new stochastic fuzzy rule base is then given. Based on their function approximation capability, this kind of stochastic generalized fuzzy models are shown to be universal fuzzy models for stochastic non-affine nonlinear systems under some sufficient conditions. An approach to stabilization controller design for stochastic non-affine nonlinear systems is then developed through their stochastic generalized T–S fuzzy approximation models. Then the results of universal fuzzy con- trollers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy controllers, are also provided, respectively. Finally, a numerical example is presented to illustrate the effectiveness of the proposed approach.

Keywords

Fuzzy Universe Fuzzy Model Dynamic Fuzzy Controller Nonlinear Stochastic Systems Function Approximation Capability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mao, X. (2007). Stochastic differential equations and applications (2nd ed.). Chichester: Horwood Publication.zbMATHGoogle Scholar
  2. 2.
    Liu, S., Jiang, Z., & Zhang, J. (2008). Global output-feedback stabilization for a class of stochastic non-minimum-phase nonlinear systems. Automatica, 44(8), 1944–1957.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berman, N., & Shaked, U. (2004). \(\cal {H}_{\infty }\) like control for nonlinear stochastic systems. Systems and Control Letters, 55(3), 123–135.MathSciNetGoogle Scholar
  4. 4.
    Xie, X., & Tan, J. (2009). Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica, 45(1), 126–133.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Li, W., Jing, Y., & Zhang, S. (2011). Adaptive state-feedback stabilization for a large class of high-order stochastic nonlinear systems. Automatica, 47(4), 819–828.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hu, L., & Mao, X. (2008). Almost sure exponential stabilisation of stochastic systems by state-feedback control. Automatica, 44(2), 465–471.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Xu, S., & Chen, T. (2002). Robust \(\cal {H}_{\infty }\) control for uncertain stochastic system with time delay. IEEE Transactions on Automatic Control, 47(12), 2089–2094.CrossRefGoogle Scholar
  8. 8.
    Zhou, S., Ren, W., & Lam, J. (2011). Stabilization for T-S model based uncertain stochastic systems. Information Sciences, 181(4), 779–791.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zhang, B., Xu, S., Zong, G., & Zou, Y. (2007). Delay-dependent stabilization for stochastic fuzzy systems with time delays. Fuzzy Sets and Systems, 158(20), 2238–2250.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, B.-S., Lee, B.-K., & Guo, L.-B. (2004). Optimal tracking design for stochastic fuzzy systems. IEEE Transaction on Fuzzy Systems, 11(6), 796–813.CrossRefGoogle Scholar
  11. 11.
    Chang, W. J., Ku, C. C., & Huang, P. H. (2010). Robust fuzzy control for uncertain stochastic time-delay Takagi-Sugeno fuzzy models for achieving passivity. Fuzzy Sets and Systems, 161(15), 2012–2032.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang, H., Wang, Y., & Liu, D. (2008). Delay-Dependent guaranteed cost control for uncertain stochastic fuzzy systems with multiple time delays. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 38(1), 126–140.CrossRefGoogle Scholar
  13. 13.
    Liang, J., Wang, Z., & Liu, X. (2010). On passivity and passification of stochastic fuzzy systems with delays: the discrete-time case. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 40(3), 964–969.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hu, L., & Yang, A. (2009). Fuzzy-model-based control of nonlinear stochastic systems with time-delay. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e2855–e2865.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, Z. D., Ho, D. W. C., & Liu, X. H. (2004). A note on the robust stability of uncertain stochastic fuzzy systems with time-delays. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(4), 570–576.CrossRefGoogle Scholar
  16. 16.
    Liu, M., Cao, X., & Shi, P. (2013). Fault estimation and tolerant control for fuzzy stochastic systems. IEEE Transaction on Fuzzy Systems, 21(2), 221–229.CrossRefGoogle Scholar
  17. 17.
    Wu, L., & Zheng, W. X. (2009). \(\cal {L}_{2}-\cal {L}_{\infty }\) control of nonlinear fuzzy \(It\hat{o}\) stochastic delay systems via dynamic output feedback. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(5), 1308–1315.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Su, X., Wu, L., Shi, P., & Song, Y. D. (2012). \(\cal {H}_{\infty }\) model reduction of Takagi-Sugeno Fuzzy Stochastic Systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 42(6), 1574–1585.CrossRefGoogle Scholar
  19. 19.
    Tseng, C. S. (2007). Robust fuzzy filter design for a class of nonlinear stochastic systems. IEEE Transactions on Fuzzy Systems, 15(2), 261–274.CrossRefGoogle Scholar
  20. 20.
    Dong, H., Wang, Z., Lam, J., & Gao, H. (2012). Fuzzy-Model-Based robust fault detection with stochastic mixed time delays and successive packet dropouts. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 42(2), 365–376.CrossRefGoogle Scholar
  21. 21.
    Buckley, J. J. (1992). Universal fuzzy controllers. Automatica, 28(6), 1245–1248.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis: A LMI approach. New York: Wiley.CrossRefGoogle Scholar
  23. 23.
    Cao, S. G., Rees, N. W., & Feng, G. (2001). Universal fuzzy controllers for a class of nonlinear systems. Fuzzy Sets and Systems, 122(1), 117–123.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Cao, S. G., Rees, N. W., & Feng, G. (2001). Mamdani-type fuzzy controllers are universal fuzzy controllers. Fuzzy Sets and Systems, 123(3), 359–367.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liu, Z., & Li, H.-X. (2005). A probabilistic fuzzy logic system for modeling and control. IEEE Transaction on Fuzzy Systems, 13(6), 848–859.CrossRefGoogle Scholar
  26. 26.
    Liu, Z., & Li, H. X. (2005). A probabilistic fuzzy logic system for uncertainty modeling. In Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC) (pp. 3853-3858), October 2005.Google Scholar
  27. 27.
    Li, H.-X., & Liu, Z. (2008). A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling. IEEE Transaction on Fuzzy Systems, 16(4), 898–908.CrossRefGoogle Scholar
  28. 28.
    Meghdadi, A. H., & Akbarzadeh, M. R. (2001). Probablistic fuzzy logic and probabilistic fuzzy systems. Proceedings of the 2001 IEEE International Conference on Fuzzy Systems (pp. 1127–1130), Melbourne, Australia, July 2001.Google Scholar
  29. 29.
    Zhang, G., & Li, H. X. (2010). A probabilistic fuzzy learning system for pattern classification. Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC) (pp. 2336–2341), Istanbul, Turkey, October 2010.Google Scholar
  30. 30.
    Liu, Z., & Li, H.-X. (2009). Probabilistic fuzzy logic system: A tool to process stochastic and imprecise information. Proceedings of the 2009 IEEE International Conference on Fuzzy Systems (pp. 848-853), Jeju Island, Korea, August 2009.Google Scholar
  31. 31.
    Berg, J. V. D., Kaymak, U., & Almeida, R. J. (2012). Conditional density estimation using probabilistic fuzzy systems. IEEE Transaction on Fuzzy Systems, 21(5), 869–882.CrossRefGoogle Scholar
  32. 32.
    Gao, Q., Zeng, X.-J., Feng, G., Wang, Y., & Qiu, J. (2012). T-S-Fuzzy-Model-Based approximation and controller design for general nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(4), 1131–1142.CrossRefGoogle Scholar
  33. 33.
    Gao, Q., Feng, G., Wang, Y., & Qiu, J. (2012). Universal fuzzy controllers based on generalized T-S fuzzy models. Fuzzy Sets and Systems, 201(6), 55–70.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zeng, X. -J., Keane, J. A., & Wang, D. (2006). Fuzzy systems approach to approximation and stabilization of conventional affine nonlinear systems. In Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (pp. 277–284), Vancouver, BC, Canada, July 2006.Google Scholar
  35. 35.
    Zeng, X. -J., & Singh, M. G. (1994). Approximation theory of fuzzy systems-SISO case. IEEE Transactions on Fuzzy Systems, 2(2), 162–176.Google Scholar
  36. 36.
    Zeng, X.-J., & Singh, M. G. (1995). Approximation theory of fuzzy systems-MIMO case. IEEE Transactions on Fuzzy Systems, 3(2), 219–235.CrossRefGoogle Scholar
  37. 37.
    Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in systems and control theory. Philadelphia: SIAM.CrossRefzbMATHGoogle Scholar
  38. 38.
    Johansson, M., Rantzer, A., & Arzen, K. E. (1999). Piecewise quadratic stability of fuzzy systems. IEEE Transactions on Fuzzy Systems, 7(6), 713–722.CrossRefGoogle Scholar
  39. 39.
    Zhou, S., Lam, J., & Xue, A. (2007). \(\cal {H}_{\infty }\) filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approach. Fuzzy Sets and Systems, 158(2), 180–193.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Buckley, J. J. (1993). Sugeno type controllers are universal controllers. Fuzzy Sets and Systems, 53(10), 299–303.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ying, H. (1998). General Takagi-Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters. Information Science, 108(1–4), 91–107.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Nguyen, H. T., Kreinovich, V., & Sirisaengtaksin, O. (1996). Fuzzy control as a universal control tool. Fuzzy Sets and Systems, 80(1), 71–86.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Chak, C. K., Feng, G., & Cao, S. G. (1996). Universal fuzzy controllers. Proceedings of the 1996 IEEE International Conference on Fuzzy Systems (pp. 2020–2025), New Orleans, LA.Google Scholar
  44. 44.
    Tsinias, J., & Spiliotis, J. (1999). A converse Lyapunov theorem for robust exponential stochastic stability. Lecture Notes in Control and Information Sciences, Workshop of the Nonlinear Control (Vol. 246, pp. 355–374). Ghent, Berlin: Springer.Google Scholar
  45. 45.
    Gao, Q., Feng, G., Wang, Y., & Qiu, J. (2013). Universal fuzzy models and universal fuzzy controllers for stochastic non-affine nonlinear systems. IEEE Transactions on Fuzzy Systems, 21(2), 328–341.CrossRefGoogle Scholar
  46. 46.
    Liu, S., Zhang, J., & Jiang, Z. (2008). A notion of stochastic input-to-state stability and its application to stability of cascaded stochastic nonlinear systems. Acta Mathematicae Applicatae Sinica, 24(1), 141–156.MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Abedi, F., Hassan, M. A., & Arifin, N. M. D. (2011). Control Lyapunov function for feedback stabilization of affine in the control stochastic time-varying systems. International Journal of Mathematical Analysis, 5(4), 175–188.MathSciNetzbMATHGoogle Scholar
  48. 48.
    Tsinias, J. (1998). Stochast input-to-state stability and applications to global feedback stabilization. International Journal of Control, 71(5), 907–930.MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Higham, D. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43(3), 525–546.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.City University of Hong KongHong KongChina

Personalised recommendations