Advertisement

Universal Fuzzy Models and Universal Fuzzy Controllers for Non-affine Nonlinear Systems

  • Qing GaoEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter concerns the universal fuzzy models and universal fuzzy controllers problem for non-affine nonlinear systems based on a class of generalized T–S fuzzy models. Universal function approximation capability of this kind of T–S fuzzy models is shown first, based on which the problem of universal fuzzy models is investigated. Detailed algorithm of constructing T–S approximation fuzzy models is provided. Then we show that the semi-global stabilization problem of a non-affine nonlinear system can be solved as a robust stabilization problem of a uncertain T–S fuzzy system. The we discuss the universality of the fuzzy control approach in the context of two classes of nonlinear systems, and we provide constructive procedures to obtain the universal fuzzy controllers. An example is finally presented to show the effectiveness of our approach.

Keywords

Fuzzy Universe Fuzzy Model Dynamic Fuzzy Controller Universal Function Approximation Semi-global Stabilization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schoenwald, D. A., & Ozguner, I. (1994). Robust stabilization of nonlinear systems with parametric uncertainty. IEEE Transactions on Automatic Control, 39(8), 1751–1755.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Liberzon, D., & Hespanha, J. P. (2005). Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, 50(6), 910–915.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Marconi, L., Praly, L., & Isidori, A. (2010). Robust asymptotic stabilization of nonlinear systems with non-hyperbolic zero dynamics. IEEE Transactions on Automatic Control, 55(4), 907–921.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Qu, Z. (1998). Robust control of nonlinear uncertain systems. New York: Wiley-Interscience.zbMATHGoogle Scholar
  5. 5.
    Hahn, W. (1968). Stability of motion. Berlin: Springer.Google Scholar
  6. 6.
    Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Upper Saddle River: Prentice Hall.zbMATHGoogle Scholar
  7. 7.
    Feng, G. (2010). Analysis and synthesis of fuzzy control systems: A model-based approach. Boca Raton: CRC Press.CrossRefzbMATHGoogle Scholar
  8. 8.
    Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis: A LMI approach. New York: Wiley.CrossRefGoogle Scholar
  9. 9.
    Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(5), 676–697.CrossRefGoogle Scholar
  10. 10.
    Sala, A., Guerra, T. M., & Babuska, R. (2005). Perspectives of fuzzy systems and control. Fuzzy Sets and Systems, 156, 432–444.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    ying, H. (2000). Fuzzy control and modeling: analytical foundations and applications. New York: Wiley-IEEE Press.CrossRefGoogle Scholar
  12. 12.
    Wang, L. X., & Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Transactions on Neural Networks, 3(5), 807–814.CrossRefGoogle Scholar
  13. 13.
    Wang, L. (1998). Universal approximation by hierarchical fuzzy systems. Fuzzy Sets and Systems, 93(2), 223–230.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, G. (1998). Fuzzy continuous input-output controllers are universal approximators. Fuzzy Sets and Systems, 97(1), 95–99.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zeng, X.-J., & Singh, M. G. (1994). Approximation theory of fuzzy systems-SISO case. IEEE Transactions on Fuzzy Systems, 2(2), 162–176.CrossRefGoogle Scholar
  16. 16.
    Zeng, X.-J., & Singh, M. G. (1995). Approximation theory of fuzzy systems-MIMO case. IEEE Transactions on Fuzzy Systems, 3(2), 219–235.CrossRefGoogle Scholar
  17. 17.
    Zeng, X.-J., & Keane, J. A. (2005). Approximation capabilities of hierarchical fuzzy systems. IEEE Transactions on Fuzzy Systems, 13(5), 659–672.CrossRefGoogle Scholar
  18. 18.
    Zeng, X.-J., & Singh, M. G. (1996). A relationship between membership functions and approximation accuracy in fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 26(1), 176–180.CrossRefGoogle Scholar
  19. 19.
    Zeng, X.-J., & Singh, M. G. (1996). Approximation accuracy analysis of fuzzy systems as function approximators. IEEE Transactions on Fuzzy Systems, 4(1), 44–63.CrossRefGoogle Scholar
  20. 20.
    Zeng, X. -J., Keane, J. A., & Wang, D. (2006). Fuzzy systems approach to approximation and stabilization of conventional affine nonlinear systems. Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (pp. 277–284), Vancouver, BC, Canada, July.Google Scholar
  21. 21.
    Fantuzzi, C., & Rovatti, R. (1996). On the approximation capabilities of the homogenerous Takagi–Sugeno model. Proceedings of the 1996 IEEE International Conference on Fuzzy Systems (pp. 1067–1072), New Orleans, LA.Google Scholar
  22. 22.
    Zeng, K., Zhang, N. Y., & Xu, W. L. (2000). A comparative study on sufficient conditions for Takagi–Sugeno fuzzy systems as universal approximators. IEEE Transactions on Fuzzy Systems, 8(6), 773–780.CrossRefGoogle Scholar
  23. 23.
    Ying, H., Ding, Y., Li, S., & Shao, S. (1999). Comparison of necessary conditions for typical Takagi–Sugeno and Mamdani fuzzy systems as universal approximators. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 29(5), 508–514.CrossRefGoogle Scholar
  24. 24.
    Castro, J. L., & Delgado, M. (1996). Fuzzy systems with defuzzification are universal approximators. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 26(1), 149–152.CrossRefGoogle Scholar
  25. 25.
    Buckley, J. J. (1992). Universal fuzzy controllers. Automatica, 28(6), 1245–1248.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Buckley, J. J. (1993). Sugeno type controllers are universal controllers. Fuzzy Sets and Systems, 53(10), 299–303.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Buckley, J. J., & Hayashi, Y. (1993). Fuzzy input–output controllers are universal approximators. Fuzzy Sets and Systems, 58(3), 273–278.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ying, H. (1998). General Takagi–Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters. Information Science, 108(1–4), 91–107.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nguyen, H. T., Kreinovich, V., & Sirisaengtaksin, O. (1996). Fuzzy control as a universal control tool. Fuzzy Sets and Systems, 80(1), 71–86.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Cao, S. G., Rees, N. W., & Feng, G. (2001). Universal fuzzy controllers for a class of nonlinear systems. Fuzzy Sets and Systems, 122(1), 117–123.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Cao, S. G., Rees, N. W., & Feng, G. (2001). Mamdani-type fuzzy controllers are universal fuzzy controllers. Fuzzy Sets and Systems, 123(3), 359–367.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Chak, C. K., Feng, G., & Cao, S. G. (1996). Universal fuzzy controllers. Proceedings of the 1996 IEEE International Conference on Fuzzy Systems (pp. 2020–2025), New Orleans, LA.Google Scholar
  33. 33.
    Feng, G. (2000). Universal fuzzy controllers for discrete-time systems. Proceedings of the 2000 IEEE International Conference on Decision and Control (pp. 394–395), Sydney, NSW.Google Scholar
  34. 34.
    Dong, J., Wang, Y., & Yang, G. (2009). Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(5), 1245–1258.CrossRefGoogle Scholar
  35. 35.
    Márquez, J. M. A., \(\tilde{{\rm P}}\)ina, A. J. B., & Arias, M. E. G. (2009). A general and formal methodology to design stable nonlinear fuzzy control systems. IEEE Transactions on Fuzzy Systems, 17(5), 1081–1091.Google Scholar
  36. 36.
    Song, C. H., Ye, J. C., Liu, D. R., & Kang, Q. (2009). Generalized receding horizon control of fuzzy systems based on numerical optimization algorithm. IEEE Transactions on Fuzzy Systems, 17(6), 1336–1352.CrossRefGoogle Scholar
  37. 37.
    Xu, C. Y., & Shin, Y. C. (2008). A fuzzy inverse model construction method for general monotonic multi-input-single-output (MISO) systems. IEEE Transactions on Fuzzy Systems, 16(5), 1216–1231.CrossRefGoogle Scholar
  38. 38.
    Chen, S. H., & Juang, J. C. (2008). Improving nonlinear T-S fuzzy controller design using sum of squares technique. Proceedings of the 2008 SICE Annual Conference (pp. 1845–1850), Aug 2008, Japan.Google Scholar
  39. 39.
    Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in systems and control theory. Philadelphia: SIAM.CrossRefzbMATHGoogle Scholar
  40. 40.
    Gao, Q., Zeng, X.-J., Feng, G., Wang, Y., & Qiu, J. (2012). T-S-fuzzy-model-based approximation and controller design for general nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(4), 1131–1142.CrossRefGoogle Scholar
  41. 41.
    Gao, Q., Feng, G., Wang, Y., & Qiu, J. (2012). Universal fuzzy controllers based on generalized T-S fuzzy models. Fuzzy Sets and Systems, 201(6), 55–70.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Lin, Y. D., Sontag, E. D., & Wang, Y. (1996). A smooth converse Lyapunov theorem for robust stability. SIAM Journal on Control and Optimization, 34(1), 124–160.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Young, A., Cao, C. Y., Hovakimyan, N., & Lavretsky, E. (2006). Control of a nonaffine double-pendulum system via dynamic inversion and time-scale separation. Proceedings of the 2006 American Control Conference (pp. 1820–1825), Minneapolis, Minnesota, USA.Google Scholar
  44. 44.
    Cao, S. G., Rees, N. W., & Feng, G. (1999). Analysis and design of fuzzy control systems using dynamic fuzzy-state space models. IEEE Transactions on Fuzzy Systems, 7(2), 192–200.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.City University of Hong KongHong KongChina

Personalised recommendations