Skip to main content

Carbon Materials from Lignin and Their Applications

  • Chapter
  • First Online:
Production of Biofuels and Chemicals from Lignin

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Thermochemical conversion of lignin into different added-value carbon materials provides interesting ways of valorization to be integrated into biorefinery schemes and pulping processes. Relatively high C percentage and the abundance of aromatic rings in the chemical structure of raw and modified lignins allows production of activated carbons, fibers, nanostructured and highly ordered carbons from different types of lignins. Activated carbons (ACs) with different porous textures have been prepared from physical and chemical activation of lignin and have been successfully tested in adsorption and heterogeneous catalysis. Carbons with hierarchical pore structure have been also obtained using nanocasting techniques with sacrificial hard templates. Surfactant templating has been used to obtain ordered mesoporous carbons. Lignin-based carbon fibers (LCFs) have been prepared by wet and dry spinning processes and by melting-spinning which allows obtaining more homogeneous fibers. Improving the structural and/or functional properties of LCFs is still a challenge and in that respect electrospinning represents a novel promising strategy for their preparation. Activated carbon fibers (ACFs) have been developed showing very high surface area (up to ≈3000 m2/g). Other promising applications of LCFs are emerging for energy storage and conversion devices. In this chapter, the characterization and potential applications of activated carbons, carbon fibers and nanostructured, hierarchical and highly ordered carbons prepared from lignin are revised and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosas JM, Berenguer R, Valero-Romero MJ, Rodriguez-Mirasol J, Cordero T. Preparation of different carbon materials by thermochemical conversion of lignin. Front Mater. 2014;1:1–17.

    Article  Google Scholar 

  2. Mattson JS, Mark HB. Activated carbon. Surface chemistry and adsorption from solution. New York: Marcel Dekker; 1971.

    Google Scholar 

  3. Bansal RC, Donnet JP, Stoeckli F. Active carbon. New York: Marcel Dekker; 1988.

    Google Scholar 

  4. Marsh H, Rodríguez-Reinoso F. Activated carbon. New York: Elsevier Science; 2006.

    Google Scholar 

  5. Suzuki H. Jap Patent 73–50989. 1973.

    Google Scholar 

  6. Ivanchenko AV, Simkin YY, Voropaev YM. USSR Patent 1328288. 1987.

    Google Scholar 

  7. Chevykin VV, Gostev VS, Karev VA, Mukihin VM, Nagornaya GA, Solorev SN. RU Patent RU2362734-C1. 2009.

    Google Scholar 

  8. Jiang J, Deng X, Wang Z. CN Patent CN1425607-A. 2005.

    Google Scholar 

  9. Del Bagno VD, Miller RL, Watkins JJ. On-site production of activated carbon from kraft black liquor. USEPA Report 600/2-78-191. 1978.

    Google Scholar 

  10. Li J, Van Heinigen ARP. Reaction kinetic of gasification of black liquor char. Can J Chem Eng. 1989;67:693–7.

    Article  CAS  Google Scholar 

  11. Li J, Van Heinigen ARP. Kinetics of carbon dioxide gasification of fast pyrolysis black liquor char. Ind Eng Chem Res. 1990;29:1776–85.

    Article  CAS  Google Scholar 

  12. Rodríguez-Mirasol J, Cordero T, Rodríguez JJ. Preparation and characterization of activated carbons from eucalyptus kraft-lignin. Carbon. 1993;31:87–95.

    Article  Google Scholar 

  13. Rodríguez-Mirasol J, Cordero T, Rodríguez JJ. Activated carbons from CO2 partial gasification of eucalyptus kraft lignin. Energy Fuel. 1993;7:133–8.

    Article  Google Scholar 

  14. Otani C, Polidoro HA, Otani S, Craievich AF. Structure variations of carbonizing lignin. J Chim Phys Phys Chim Biol. 1984;81:887–91.

    CAS  Google Scholar 

  15. Cordero T, Rodriguez-Maroto JM, Rodríguez-Mirasol J, Rodríguez JJ. On the kinetics of thermal decomposition of wood and wood components. Thermochim Acta. 1990;164:135–44.

    Article  CAS  Google Scholar 

  16. Órfão JJM, Antunes FJA, Figueiredo JL. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel. 1999;78:349–58.

    Article  Google Scholar 

  17. Baklanova ON, Plaksin GV, Drozdov VA, Duplyakin VK, Chesnokov NV, Kuznetsov BN. Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin. Carbon. 2003;41:1793–800.

    Article  CAS  Google Scholar 

  18. Xie X, Goodell B, Zhang D, Nagle DC, Qian Y, Peterson ML, Jellison J. Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Bioresour Technol. 2009;100:1797–802.

    Article  CAS  PubMed  Google Scholar 

  19. Kijima M, Hirukawa T, Hanawa F, Hata T. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials. Bioresour Technol. 2011;102:6279–85.

    Article  CAS  PubMed  Google Scholar 

  20. Sharma RK, Wooten JB, Baliga VL, Lin X, Chan WG, Hajaligol MR. Characterisation of chars from pyrolysis of lignin. Fuel. 2004;83:1469–82.

    Article  CAS  Google Scholar 

  21. Kuznetsov BN, Shchipko ML. The conversion of wood lignin to char materials in a fluidized bed of Al-Cu-Cr oxide catalysts. Bioresour Technol. 1995;52:13–9.

    Article  CAS  Google Scholar 

  22. Rodríguez-Mirasol J, Cordero T, Rodríguez JJ. CO2-reactivity of eucalyptus kraft-lignin. Carbon. 1993;31:53–61.

    Article  Google Scholar 

  23. Tancredi N, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ. CO2-gasification of eucalyptus wood chars. Fuel. 1996;75:1505–8.

    Article  CAS  Google Scholar 

  24. Carrott PJM, Suhas, Ribeiro-Carrott MML, Guerrero CI, Delgado LA. Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins. J Anal Appl Pyrolysis. 2008;82:264–71.

    Article  CAS  Google Scholar 

  25. Gergova K, Petrov N, Eser S. Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis. Carbon. 1994;32:693–702.

    Article  CAS  Google Scholar 

  26. Perezdrienko IV, Molodozhenyuk TB, Shermatov BE, Yunusov MP. Effect of carbonization temperature and activation on structural formation of active lignin carbons. Russian J Appl Chem. 2001;74:1650–2.

    Article  CAS  Google Scholar 

  27. Fu K, Yue Q, Gao B, Sun Y, Zhu L. Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chem Eng J. 2013;228:1074–82.

    Article  CAS  Google Scholar 

  28. Rodriguez-Reinoso F, Martin-Martinez JM, Molina-Sabio M, Perez-Lledo I, Prado-Berruguete C. A comparison of the porous texture of two CO2-activated botanic materials. Carbon. 1985;23:19–24.

    Article  CAS  Google Scholar 

  29. Rodriguez-Reinoso F, Molina-Sabio M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon. 1992;30:1111–8.

    Article  CAS  Google Scholar 

  30. Tancredi N, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ. Activated carbons from Uruguayan eucalyptus wood. Fuel. 1996;75:1701–6.

    Article  CAS  Google Scholar 

  31. Tancredi N, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ. Activated carbons from eucalyptus wood. Influence of the carbonization temperature. Sep Sci Technol. 1997;32:1115–26.

    Article  CAS  Google Scholar 

  32. Arriagada R, Garcia R, Molina-Sabio M, Rodriguez-Reinoso F. Effect of steam activation on the porosity and chemical nature of activated carbons from Eucalytus globulus and peach stones. Microporous Mater. 1997;8:123–30.

    Article  CAS  Google Scholar 

  33. Marquez-Montesinos F, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ. Powdered activated carbons from Pinus caribaea sawdust. Sep Sci Technol. 2001;36:3191–206.

    Article  CAS  Google Scholar 

  34. Prauchner MJ, Rodriguez-Reinoso F. Chemical versus physical activation of coconut shell: a comparative study. Microporous Mesoporous Mater. 2012;152:163–71.

    Article  CAS  Google Scholar 

  35. Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, Rodrıguez JJ. Development of porosity upon chemical activation of kraft lignin with ZnCl2. Ind Eng Chem Res. 1997;36:4832–8.

    Article  CAS  Google Scholar 

  36. Torregrosa R, Martin-Martinez JM. Activation of lignocellulosic materials: a comparison between chemical, physical and combined activation in terms of porous texture. Fuel. 1991;70:1173–80.

    Article  CAS  Google Scholar 

  37. Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, Cotoruelo LM, Rodrıguez JJ. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors. Water Res. 2004;38:3043–50.

    Article  CAS  PubMed  Google Scholar 

  38. Guo Y, Rockstraw DA. Physical and chemical properties of carbons synthesized from xylan, cellulose, and kraft lignin by H3PO4 activation. Carbon. 2006;44:1464–75.

    Article  CAS  Google Scholar 

  39. Hayashi J, Kazehaya A, Muroyama K, Watkinson AO. Preparation of activated carbon from lignin by chemical activation. Carbon. 2000;38:1873–8.

    Article  CAS  Google Scholar 

  40. Hayashi J, Muroyama K, Gomes VG, Watkinson AO. Fractal dimensions of activated carbons prepared from lignin by chemical activation. Carbon. 2002;40:617–36.

    Article  Google Scholar 

  41. Sun Y, Yang G, J-p Z, Wang Y, Yao MS. Activated carbon preparation from lignin by H3PO4 activation and its application to gas separation. Chem Eng Technol. 2012;35:309–16.

    Article  CAS  Google Scholar 

  42. Myglovets M, Poddubnaya OI, Sevastyanova O, Lindström ME, Gawdzik B, Sobiesiak M, Tsyba MM, Sapsay VI, Klymchuk DO, Puzuy AM. Preparation of carbon adsorbents form lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon. 2014;80:771–83.

    Article  CAS  Google Scholar 

  43. Fierro V, Torne-Fernandez V, Montane D, Celzard A. Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochem Acta. 2005;433:142–8.

    Article  CAS  Google Scholar 

  44. Montane D, Torne-Fernandez V, Fierro V. Activated carbons from lignin: kinetic modeling of the pyrolysis of kraft lignin activated with phosphoric acid. Chem Eng J. 2005;106:1–12.

    Article  CAS  Google Scholar 

  45. Fierro V, Torne-Fernandez V, Celzard A. Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: synthesis and textural characterisation. Microporous Mesoporous Mater. 2006;92:243–50.

    Article  CAS  Google Scholar 

  46. Fierro V, Torne-Fernandez V, Celzard A, Montane D. Influence of the demineralisation on the chemical activation of kraft lignin with orthophosphoric acid. J Hazard Mater. 2007;149:126–33.

    Article  CAS  PubMed  Google Scholar 

  47. Bedia J, Rosas JM, Marquez J, Rodriguez-Mirasol J, Cordero T. Preparation and characterization of carbon based acid catalysts for the dehydration of 2-propanol. Carbon. 2009;47:286–94.

    Article  CAS  Google Scholar 

  48. Rosas JM, Ruiz-Rosas R, Rodriguez-Mirasol J, Cordero T. Kinetic study of the oxidation resistance of phosphorus-containing activated carbons. Carbon. 2012;50:1523–37.

    Article  CAS  Google Scholar 

  49. Jagtoyen M, Derbyshire F. Some considerations of the origins of porosity in carbons from chemically activated wood. Carbon. 1993;31:1185–92.

    Article  CAS  Google Scholar 

  50. Molina-Sabio M, Rodriguez-Reinoso F, Caturla F, Selles MJ. Porosity in granular carbons activated with phosphoric acid. Carbon. 1995;33:1105–13.

    Article  CAS  Google Scholar 

  51. Laine J, Calafat A, Labady M. Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid. Carbon. 1989;27:191–5.

    Article  CAS  Google Scholar 

  52. Wennenberg AN, O’Grady TM. US Patent 4082694. 1978.

    Google Scholar 

  53. Linares-Solano A, Lozano-Castello D, Lillo-Rodenas MA, Cazorla Amoros D. Carbon activation by alkaline hydroxides: preparation and reactions, porosity and performances. In: Radovic LR, editor. Chemistry and physics of carbon, vol. 30. Boca Raton: CRC Press; 2008.

    Google Scholar 

  54. Khezami L, Chetouani A, Taouk B, Capart R. Production and characterization of activated carbon from wood components in powder: cellulose, lignin, xylan. Powder Technol. 2005;157:48–56.

    Article  CAS  Google Scholar 

  55. Fierro V, Torne-Fernandez V, Celzard A. Highly microporous carbons prepared by activation of kraft lignin with KOH. Stud Surf Sci Catal. 2007;160:607–14.

    Article  CAS  Google Scholar 

  56. Fierro V, Torne-Fernandez V, Celzard A. Methodical study of the chemical activation of kraft lignin with KOH and NaOH. Microporous Mesoporous Mater. 2007;101:419–31.

    Article  CAS  Google Scholar 

  57. Torne-Fernandez V, Mateo- Sanz JM, Montane D, Fierro V. Statistical optimization of the synthesis of highly microporous carbons by chemical activation of kraft lignin with NaOH. J Chem Eng Data. 2009;54:2216–21.

    Article  CAS  Google Scholar 

  58. Gao Y, Yue Q, Gao B, Sun Y, Wang W, Li Q, Wang Y. Preparation of high surface area-activated carbon from lignin of papermaking liquor by KOH activation for Ni(II) adsorption. Chem Eng J. 2013;217:345–53.

    Article  CAS  Google Scholar 

  59. Li X-F, Xu Q, Fu Y, Guo Q-X. Preparation and characterization of activated carbon from kraft lignin via KOH activation. Environ Prog Sustain Energy. 2014;33:519–25.

    Article  CAS  Google Scholar 

  60. Jin XJ, Yu ZM, Wu Y. Preparation of activated carbon from lignin obtained by straw pulping by KOH and K2CO3 chemical activation. Cellul Chem Technol. 2012;46:79–85.

    CAS  Google Scholar 

  61. Hu Z, Srinivasan MP. Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater. 1999;27:11–8.

    Article  Google Scholar 

  62. Marco-Lozar JP, Linares-Solano A, Cazorla-Amoros D. Effect of the porous texture and surface chemistry of activated carbons on the adsorption of a germanium complex from dilute aqueous solutions. Carbon. 2011;49:3325–31.

    Article  CAS  Google Scholar 

  63. Suhas CPJM, Ribeiro Carrott MML. Lignin-from natural adsorbent to activated carbon: a review. Bioresour Technol. 2007;98:2301–12.

    Article  CAS  PubMed  Google Scholar 

  64. Srivastava SK, Singh AK, Sharma A. Studies on the uptake of lead and zinc by lignin obtained from black liquor-a paper-industry waste material. Environ Technol. 1994;15:353–61.

    Article  CAS  Google Scholar 

  65. Toles CA, Marshall WE, Mitchell MJ. Surface functional groups on acid-activated nutshells carbons. Carbon. 1999;37:1207–14.

    Article  CAS  Google Scholar 

  66. Huang G, Wang D, Ma S, Chen J, Jiang L, Wang P. A new low-cost adsorbent: preparation, Characterization and adsorption behavior of Pb(II) and Cu(II). J Colloid Interface Sci. 2015;445:294–302.

    Article  CAS  PubMed  Google Scholar 

  67. Meng CB, Weber J. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation. ChemSusChem. 2014;7:3312–8.

    Article  CAS  PubMed  Google Scholar 

  68. Cotoruelo LM, Marques MD, Rodriguez-Mirasol J, Cordero T, Rodriguez JJ. Adsorption of aromatic compounds on activated carbons from lignin: equilibrium and thermodynamic study. Ind Eng Chem Res. 2007;46:4982–90.

    Article  CAS  Google Scholar 

  69. Cotoruelo LM, Marques MD, Rodriguez-Mirasol J, Cordero T, Rodriguez JJ. Adsorption of aromatic compounds on activated carbons from lignin: kinetic study. Ind Eng Chem Res. 2007;46:2853–60.

    Article  CAS  Google Scholar 

  70. Cotoruelo LM, Marques MD, Díaz FJ, Rodriguez-Mirasol J, Rodriguez JJ, Cordero T. Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions. Chem Eng J. 2012;184:176–83.

    Article  CAS  Google Scholar 

  71. Cotoruelo LM, Marques MD, Diaz FJ, Rodriguez-Mirasol J, Rodriguez JJ, Cordero T. Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: equilibrium and kinetic studies. J Colloid Interface Sci. 2009;332:39–45.

    Article  CAS  PubMed  Google Scholar 

  72. Cotoruelo LM, Marques MD, Diaz FJ, Rodriguez-Mirasol J, Cordero T, Rodriguez JJ. Activated carbons from lignin: their application in liquid phase adsorption. Sep Sci Technol. 2007;42:3363–89.

    Article  CAS  Google Scholar 

  73. Cotoruelo LM, Marques MD, Rodriguez-Mirasol J, Rodriguez JJ, Cordero T. Cationic dyes removal by multilayer adsorption on activated carbons from lignin. J Porous Mater. 2011;18:693–702.

    Article  CAS  Google Scholar 

  74. Cotoruelo LM, Marques MD, Diaz FJ, Rodriguez-Mirasol J, Rodriguez JJ, Cordero T. Equilibrium and kinetic study of congo red adsorption onto lignin-based activated carbons. Transp Porous Media. 2010;83:573–90.

    Article  CAS  Google Scholar 

  75. Cotoruelo LM, Marques MD, Diaz FJ, Rodriguez-Mirasol J, Rodriguez JJ, Cordero T. Lignin-based activated carbons as adsorbents for crystal violet removal from aqueous solutions. Environ Prog Sustainable Energy. 2012;31:386–96.

    Article  CAS  Google Scholar 

  76. Cotoruelo LM, Marques MD, Leiva A, Rodriguez-Mirasol J, Cordero T. Adsorption of oxygen-containing aromatics used in petrochemical, pharmaceutical and food industries by means of lignin-based active carbons. Adsorption. 2011;17:539–50.

    Article  CAS  Google Scholar 

  77. Fierro V, Torne-Fernandez V, Montane D, Celzard A. Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater. 2008;111:276–84.

    Article  CAS  Google Scholar 

  78. Mussatto SI, Fernandes M, Rocha GJM, Orfao JJM, Teixeira JA, Roberto IC. Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresour Technol. 2010;101:2450–7.

    Article  CAS  PubMed  Google Scholar 

  79. Huang LH, Wang M, Shi CX, Huang J, Zhang B. Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation. Desalin Water Treat. 2014;52:2678–87.

    Article  CAS  Google Scholar 

  80. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J. Carbon materials as adsorbents in aqueous solutions. In: Radovic LR, editor. Chemistry and physics of carbon, vol 27. New York: Marcel Dekker; 2000. p. 228–405.

    Google Scholar 

  81. Rodriguez-Mirasol J, Bedia J, Cordero T, Rodríguez JJ. Influence of water vapor on the adsorption of VOCs on lignin-based activated carbons. Sep Sci Technol. 2005;40:3113–35.

    Article  CAS  Google Scholar 

  82. Bedia J, Rodriguez-Mirasol J, Cordero T. Water vapour adsorption on lignin-based activated carbons. J Chem Technol Biotechnol. 2007;82:548–57.

    Article  CAS  Google Scholar 

  83. Bedia J, Rosas JM, Rodriguez-Mirasol J, Cordero T. Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation. Appl Catal B Environ. 2010;94:8–18.

    Article  CAS  Google Scholar 

  84. Guillen E, Rico R, Lopez-Romero JM, Bedia J, Rosas JM, Rodriguez-Mirasol J, Cordero T. Pd-activated carbon catalysts for hydrogenation and Suzuki reactions. Appl Catal A Gen. 2009;368:113–20.

    Article  CAS  Google Scholar 

  85. Zazo JA, Bedia J, Fierro CM, Pliego G, Casas JA, Rodriguez JJ. Highly stable Fe on activated carbon catalyst for CWPO upon FeCl3 activation of lignin from black liquors. Catal Today. 2012;187:115–21.

    Article  CAS  Google Scholar 

  86. Chieffi G, Fechler N, Esposito D. Valorization of lignin waste from hydrothermal treatment of biomass: towards porous carbonaceous composites for continuous hydrogenation. RCS Adv. 2015;5:63691–6.

    CAS  Google Scholar 

  87. Leitten C, Griffith W, Compere A, Shaffer J. High-volume, low-cost precursors for carbon iber roduction. SAE Technical Paper 2002-01-1907. 2002.

    Google Scholar 

  88. Lallave M, Bedia J, Ruiz-Rosas R, Rodriguez-Mirasol J, Cordero T, Otero JC, Marquez A, Barrero A, Loscertales IG. Filled and hollow carbon nanofibers by coaxial electrospinning of Alcell lignin without binder polymers. Adv Mater. 2007;19:4292–6.

    Article  CAS  Google Scholar 

  89. Ruiz-Rosas R, Bedia J, Lallave M, Loscertales IG, Barrero A, Rodriguez-Mirasol J, Cordero T. The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon. 2010;48:696–705.

    Article  CAS  Google Scholar 

  90. Baker DA, Rials TG. Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci. 2013;130:713–28.

    Article  CAS  Google Scholar 

  91. Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR. Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed Engl. 2014;53:5262–98.

    Article  CAS  PubMed  Google Scholar 

  92. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843.

    Article  PubMed  CAS  Google Scholar 

  93. Otani S, Fukuoka Y, Igarashi B, Sasaki K. Method for producing carbonized lignin fiber. US 3461082 A. 1969.

    Google Scholar 

  94. Fukuoka Y. Method for producing carbonized lignin fiber. Jpn Chem Q. 1969;5:63–6.

    CAS  Google Scholar 

  95. Mikawa S. Lignin-based carbon fiber. Chem Econ Eng Rev. 1970;2:43–6.

    CAS  Google Scholar 

  96. Mansmann M. Stable lignin fibers. GB 1359764 A. 1974.

    Google Scholar 

  97. Bissett PJ, Herriott CW. Lignin/polyacrylonitrile-containing dopes, fibers and production methods. US 20120003471 and WO 2012003070. 2012.

    Google Scholar 

  98. Maradur SP, Kim CH, Kim SY, Kim B-H, Kim WC, Yang KS. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met. 2012;162:5–6.

    Article  CAS  Google Scholar 

  99. Seydibeyoglu MO. A novel partially biobased PAN-lignin blend as a potential carbon Fiber precursor. J Biomed Biotechnol. 2012;2012:1–8.

    Article  CAS  Google Scholar 

  100. Sudo K, Shimizu K. Production of lignin-based carbon fiber. JP 62–110922. 1987.

    Google Scholar 

  101. Uraki Y, Hubo S, Nigo N, SanoY Sasaya T. Preparation of carbon fibers from organosolv lignin obtained by aqueous-acetic-acid pulping. Holzforschung. 1995;49:343–50.

    Article  CAS  Google Scholar 

  102. Uraki Y, Kubo S, Kurakami H, Sano Y. Activated carbon fibers from acetic acid lignin. Holzforschung. 1997;51:188–92.

    Article  CAS  Google Scholar 

  103. Uraki Y, Nakatani A, KuboS SY. Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin. J Wood Sci. 2001;47:465–9.

    Article  CAS  Google Scholar 

  104. Kubo S, Uraki Y, Sano Y. Preparation of carbon fibers from soft-wood lignin by atmospheric acetic acid pulping. Carbon. 1998;36:1119–24.

    Article  CAS  Google Scholar 

  105. Luo J, Genco J, Cole BJW, Fort RC. Lignin recovered from the near-neutral hemicelluloses extraction process as a precursor for carbon fiber. Bioresources. 2011;6:4566–93.

    CAS  Google Scholar 

  106. Lin J, Kubo S, Yamada T, Koda K, Uraki Y. Chemical thermostabilization for the preparation of carbon fibers from soft wood lignin. Bioresources. 2012;7:5634–46.

    Google Scholar 

  107. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon. 2002;40:2913–20.

    Article  CAS  Google Scholar 

  108. Baker DA, Gallego NC, Baker FS. Carbon fiber production from a Kraft hard wood lignin. In: Book of abstracts of the fiber society. Québec: Fall Conference 2008; 2008. p. 106–7.

    Google Scholar 

  109. Baker FS, Gallego NC. Low cost carbon fiber from renewable resources. In: DOEFY2010 progress report for light weighting materials, Part 3.C. Washington, DC: US Department of Energy; 2010. p. 32.

    Google Scholar 

  110. Baker DA, Harper DP, Rials TG. Carbon fiber from extracted commercial softwood lignin. In Book of abstracts of the fiber society. Boston: Fall Conference; 2012. p. 17.

    Google Scholar 

  111. Nordström Y, NorbergI SE, Drougge R. A new softening agent for melt spinning of soft wood Kraft lignin. J Appl Polym Sci. 2012;129:1274–9.

    Article  CAS  Google Scholar 

  112. Kadla JF, Kubo S, Venditti RA, Gilbert RD. Novel hollow core fibers prepared from lignin polypropylene blends. J Appl Polym Sci. 2002;85:1353–5.

    Article  CAS  Google Scholar 

  113. Kadla JF, Kubo S. Lignin-based polymer blends: analysis of intermolecular interactions in lignin-synthetic polymer blends. Compos A Appl Sci Manuf. 2004;35:395–400.

    Article  CAS  Google Scholar 

  114. Kubo S, Kadla JF. Poly(ethyleneoxide)/organosolv lignin blends: relationship between thermal properties, chemical structure and blend behavior. Macromolecules. 2004;37:6904–11.

    Article  CAS  Google Scholar 

  115. Kubo S, Kadla JF. Kraft lignin/poly(ethyleneoxide) blends: effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci. 2005;98:1437–44.

    Article  CAS  Google Scholar 

  116. Kubo S, Kadla JF. The formation of strong intermolecular interactions in immiscible blends of poly(vinylalcohol) (PVA) and lignin. Biomacromolecules. 2003;4:561–7.

    Article  CAS  PubMed  Google Scholar 

  117. Baker FS, Gallego NC, Baker DA. Low cost carbon fiber from renewable resources. In: DOEFY2008 progress report for light weighting materials, Part 7.A. Washington, DC: US Department of Energy; 2008. p. 1.

    Google Scholar 

  118. Warren CD. Future lower cost carbon fiber for autos: international scale-up & what is needed. In: 8th-Annual Automotive Composites Conference and Exhibition (ACCE2008): the road to light weight performance. Troy: SPE Automotive and Composites Divisions; 2008. p. 50.

    Google Scholar 

  119. Sevastyanova O, Qin W, Kadla JF. Effect of nanofillers as reinforcement agents for lignin composite fibers. J Appl Polym Sci. 2010;117:2877–81.

    CAS  Google Scholar 

  120. Qin W, Kadla JF. Effect of organoclay reinforcement on lignin-based carbon fibers. Ind Eng Chem Res. 2011;50:12548–55.

    Article  CAS  Google Scholar 

  121. Baker FS, Baker DA, Menchhofer PA. Carbon nanotube enhanced precursor for carbon fiber production and method of making a CNT-enhanced continuous lignin fiber. US Patent 2011285049 A1. 2011.

    Google Scholar 

  122. Sudo K, Shimizu K. A new carbon fiber from lignin. J Appl Polym Sci. 1992;44:127–34.

    Article  CAS  Google Scholar 

  123. Sudo K, Shimizu K, Nakashima N, Yokoyama A. A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J Appl Polym Sci. 1993;48:1485–91.

    Article  CAS  Google Scholar 

  124. Sudo K, Shimizu K. Method for manufacturing lignin for carbon fiber spinning. US Patent 5344921 A. 1994.

    Google Scholar 

  125. Gould AM. Manufacture of Carbon Fibre. Patent GB 1358164A. 1974.

    Google Scholar 

  126. Eckert RC, Abdullah Z. Carbon Fibers from Kraft Soft wood Lignin. US Patent 20080317661. 2008.

    Google Scholar 

  127. Wohlmann B, Woelki M, Ebert A, Engelmann G, Fink HP. Lignin derivative, shaped body comprising the derivative, and carbon fibers produced from the shaped body. Patent WO2010081775. 2010.

    Google Scholar 

  128. Shen Q, Zhang T, Zhang WX, Chen S, Mezgebe M. Lignin-based activated carbon fibers and controllable pore size and properties. J Appl Polym Sci. 2011;121:989–94.

    Article  CAS  Google Scholar 

  129. Thunga M, Chen K, Grewell D, Kessler MR. Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon. 2014;68:159–66.

    Article  CAS  Google Scholar 

  130. Sen S, Sadeghifar H, Argyropoulos DS. Kraft lignin chain extension chemistry via propargylation, oxidative coupling and Claisen rearrangement. Biomacromolecules. 2013;14:3399–408.

    Article  CAS  PubMed  Google Scholar 

  131. Berenguer R, Garcia-Mateos FJ, Ruiz-Rosas R, Cazorla-Amoros D, Morallon E, Rodriguez-Mirasol J, Cordero T. Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem. 2015. doi:10.1039/C5GC02409A.

    Google Scholar 

  132. Dallmeyer I, Ko F, Kadla JF. Electrospinning of technical lignins for the production of fibrous networks. J Wood Chem Technol. 2010;30:315–29.

    Article  CAS  Google Scholar 

  133. Hosseinaei O, Baker DA. Electrospun carbon nanofibers from Kraft lignin. In: Book of abstracts of the fiber society. Boston, Fall Conference; 2012. p. 19.

    Google Scholar 

  134. Montero GA, Peresin MS, Rojas OJ. Lignins in the production of nanofibers via elecrospinning. In: The abstract book of the 82nd ACS colloid and surface science symposium; 2008.

    Google Scholar 

  135. Dallmeyer I, Ko F, Kadla JF. Correlation of elongational fluid properties to fiber diameter in electrospinning of softwood Kraft lignin solutions. Ind Eng Chem Res. 2014;53:2697–705.

    Article  CAS  Google Scholar 

  136. Seo DK, Jeun JP, Kim HB, Kang PH. Preparation and characterization of the carbon nanofiber mat produced from electrospun PAN/lignin precursors by electron beam irradiation. Rev Adv Mater Sci. 2011;28:31–4.

    CAS  Google Scholar 

  137. Choi DI, Lee JN, Song J, Kang PH, Park JK, Lee YM. Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes. J Solid State Electrochem. 2013;17:2471–5.

    Article  CAS  Google Scholar 

  138. Lai C, Zhou Z, Zhang L, Wang X, Zhou Q, Zhao Y, Wang Y, Wu XF, Zhu Z, Fong H. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources. 2014;247:134–41.

    Article  CAS  Google Scholar 

  139. Lin L, Li Y, Ko FK. Fabrication and properties of lignin based carbon nanofiber. J Fiber Bioeng Inform. 2013;6:335–47.

    Google Scholar 

  140. Teng NY, Dallmeyer I, Kadla JF. Incorporation of multiwalled carbon nanotubes into electrospun softwood Kraft lignin-based fibers. J Wood Chem Technol. 2013;33:299–316.

    Article  CAS  Google Scholar 

  141. Hu S, Hsieh YL. Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin. J Mater Chem A. 2013;1:11279–88.

    Article  CAS  Google Scholar 

  142. Hu S, Zhang S, Pan N, Hsieh YL. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources. 2014;270:106–12.

    Article  CAS  Google Scholar 

  143. Braun JL, Holtman KM, Kadla JF. Lignin-based carbon fibers: oxidative thermostabilization of Kraft lignin. Carbon. 2005;43:385–94.

    Article  CAS  Google Scholar 

  144. Foston M, Nunnery GA, Meng X, Sun Q, Baker FS, Ragauskas A. NMR a critical tool to study the production of carbon fiber from lignin. Carbon. 2013;52:65–73.

    Article  CAS  Google Scholar 

  145. Brodin I, Ernstsson M, Gellerstedt G, Sjöholm E. Oxidative stabilization of Kraft lignin for carbon fibre production. Holzforschung. 2012;66:141–7.

    Article  CAS  Google Scholar 

  146. Gellerstedt G, Sjoeholm E, Brodin I. The wood-based biorefinery: a source of carbon fiber? Open Agric J. 2010;4:119–24.

    Article  CAS  Google Scholar 

  147. Dallmeyer I, Lin LT, Li Y, Ko F, Kadla JF. Preparation and characterization of interconnected Kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng. 2014;299:540–51.

    Article  CAS  Google Scholar 

  148. Baker DA, Baker FS, Gallego NC. Thermal engineering of lignin for low-cost production of carbon fiber. In: Book of abstracts of the fiber society. Georgia, Fall Conference; 2009. p. 54.

    Google Scholar 

  149. Kubo S, Kadla JF. Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ. 2005;13:97–105.

    Article  CAS  Google Scholar 

  150. Compere AL. Evaluation of lignin from alkaline-pulped hardwood black liquor. Reports of the Oak Ridge National Laboratory; 2005.

    Google Scholar 

  151. Johnson DJ, Tomizuka I. The fine structure of lignin- and pitch-based carbon fibers. In: Mountifield J, editor. Carbon fibres: their place in modern technology, Plastics and polymers conference supplement no. 6. London: Plastics Institute; 1974. p. 20.

    Google Scholar 

  152. Rodríguez-Mirasol J, Cordero T, Rodriguez JJ. High temperature carbons from lignin. Carbon. 1996;34:43–52.

    Article  Google Scholar 

  153. McCarthy JL, Islam A. Lignin chemistry, technology and utilization: a brief history. In: Glasser WG, Northey RA, Schultz TP, editors. Lignin: historical, biological, and materials perspectives, ACS symposium series, vol. 742. Washington, DC: American Chemical Society; 2000. p. 2.

    Chapter  Google Scholar 

  154. Capanema EA, Balakshin MY, Kadla JF. A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J Agric Food Chem. 2004;52:1850–60.

    Article  CAS  PubMed  Google Scholar 

  155. Compere AL, Griffith WL, Leitten CF, Petrovan S. Improving the fundamental properties of lignin-based carbon fiber for transportation applications. In: Proceedings of the 36th International SAMPE technical conference, society for the advancement of material and process engineering. Covina; 2004. p. 2246.

    Google Scholar 

  156. Hurt RH, Chen ZY. Liquid crystals and carbon materials. Phys Today. 2000;53:39–44.

    Article  CAS  Google Scholar 

  157. Kubo S, Yoshida T, Kadla JF. Surface porosity of lignin/PP blend carbon fibers. J Wood Chem Technol. 2007;27:257–71.

    Article  CAS  Google Scholar 

  158. Wang SX, Yang L, Stubbs LP, LiX HC. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces. 2013;5:12275–82.

    Article  CAS  PubMed  Google Scholar 

  159. Kyotani T, Nagai T, Inoue S, Tomita A. Formation of new type of porous carbons by carbonization in zeolite nanochannels. Chem Mater. 1997;9:609–15.

    Article  CAS  Google Scholar 

  160. Rodriguez-Mirasol J, Cordero T, Radovic LR, Rodriguez JJ. Structural and textural properties of pyrolytic carbon formed within a microporous zeolite template. Chem Mater. 1998;10:550–8.

    Article  CAS  Google Scholar 

  161. Fierro CM, Górka J, Zazo JA, Rodriguez JJ, Ludwinowicz J, Jaroniec M. Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin. Carbon. 2013;62:233–9.

    Article  CAS  Google Scholar 

  162. Saha D, Warren KE, Naskar K. Soft-templated mesoporous carbons as potential materials for oral drug delivery. Carbon. 2014;71:47–57.

    Article  CAS  Google Scholar 

  163. Valero-Romero MJ, Márquez-Franco EM, Bedia J, Rodríguez-Mirasol J, Cordero T. Hierarchical porous carbons by liquid phase impregnation of zeolite templates with lignin solution. Microporous Mesoporous Mater. 2014;196:68–78.

    Article  CAS  Google Scholar 

  164. Ruiz-Rosas R, Valero-Romero MJ, Salinas-Torres D, Rodríguez-Mirasol J, Cordero T, Morallón E, Cazorla-Amorós D. Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. ChemSusChem. 2014;7:1458–67.

    Article  CAS  PubMed  Google Scholar 

  165. Wang N, Fan H, Ai S. Lignin-templated synthesis of porous carbon-CeO2 composites and their application for the photocatalytic desulphuration. Chem Eng J. 2015;260:785–90.

    Article  CAS  Google Scholar 

  166. Zhang W, Yin J, Lin Z, Lin H, Lu H, Wang Y, Huang W. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim Acta. 2015;176:1136–42.

    Article  CAS  Google Scholar 

  167. Zhang W, Zhao M, Liu R, Wang X, Lin H. Hierarchical porous carbon derived from lignin for high performance supercapacitor. Colloids Surf A Physicochem Eng Asp. 2015;484:518–27.

    Article  CAS  Google Scholar 

  168. Hata T, Yamane K, Kobayashi E, Imamura Y, Isihara S. MMicrostructural investigation of wood charcoal made by spark plasma sintering. J Wood Sci. 1998;44:332–4.

    Article  Google Scholar 

  169. Rodriguez-Mirasol J, Cordero T, Rodriguez JJ. High-temperature carbons from kraft lignin. Carbon. 1996;34:43–52.

    Article  CAS  Google Scholar 

  170. Jones LE, Thrower PA. Influence of boron on carbon fiber microstructure, physical properties and oxidation behavior. Carbon. 1991;29:251–69.

    Article  CAS  Google Scholar 

  171. Pimenta M, Dresselhaus M, Dresselhaus MSD, Cancado L, Jorio A, Saito L. Studying disorders in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys. 2007;9:1276–90.

    Article  CAS  PubMed  Google Scholar 

  172. Johnson DJ, Tomizuka I, Watanabe O. The fine structure of lignin-based carbon fibres. Carbon. 1975;13:321–5.

    Article  CAS  Google Scholar 

  173. Kubo S, Uraki Y, Sano Y. Catalytic graphitization of hardwood acetic acid lignin with nickel acetate. J Wood Sci. 2003;49:188–92.

    Article  CAS  Google Scholar 

  174. Popova OV, Servinovskii MY. Graphite from hydrolysis lignin: preparation procedure, structure, properties and application. Russ J Appl Chem. 2014;87:818–23.

    Article  CAS  Google Scholar 

  175. Popova OV, Servinovskiy MY, Abramova AG. Development of technology for production and application of graphite from hydrolytic lignin. Eur J Wood Prod. 2015;73:369–75.

    Article  CAS  Google Scholar 

  176. Demir M, Kahveci Z, Aksoy B, Palapati NKR, Subramanian A, Cullinan HT, El-Kaderi HM, Harris CT, Gupta RB. Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin. Ind Eng Chem Res. 2015;54:10731–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan J. Rodríguez or Tomás Cordero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Rodríguez, J.J., Cordero, T., Rodríguez-Mirasol, J. (2016). Carbon Materials from Lignin and Their Applications. In: Fang, Z., Smith, Jr., R. (eds) Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-1965-4_8

Download citation

Publish with us

Policies and ethics