Characteristic Properties of Nanoclays and Characterization of Nanoparticulates and Nanocomposites

  • Muhammad Shahid Nazir
  • Mohamad Haafiz Mohamad Kassim
  • Lagnamayee Mohapatra
  • Mazhar Amjad Gilani
  • Muhammad Rafi Raza
  • Khaliq MajeedEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Clays have been one of the more important industrial minerals; and with the recent advent of nanotechnology, they have found multifarious applications and in each application, nanoclays help to improve the quality of product, economize on the cost and saves environment. The chapter describes key characteristics of nanoclays and their classification on the basis of the arrangement of “sheets” in their basic structural unit “layer”. Major groups include kaolin–serpentine, pyrophyllite-talc, smectite, vermiculite, mica and Chlorite. The structural, morphological and physicochemical properties of halloystite and montmorillonite nanoclays, representative of the 1:1 and 2:1 layer groups, respectively, are discussed as well. After briefly introducing the surface modification of clay minerals by modifying or functionalizing their surfaces and their incorporation into polymer matrices to develop polymer/clay nanocomposites, techniques that are being employed to characterize these nanoclays, in general, and the sample preparation for these techniques, in particular, are also reviewed in this chapter.


Nanoclays Montmorillonite Halloystite Structural Morphological properties 


  1. Abdullah, M., Afzaal, M., Ismail, Z., Ahmad, A., Nazir, M., Bhat, A.: Comparative study on structural modification of Ceiba pentandra for oil sorption and palm oil mill effluent treatment. Desalin. Water Treat. 54, 3044–3053 (2015)CrossRefGoogle Scholar
  2. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat. Sci. Eng. R 28, 1–63 (2000)CrossRefGoogle Scholar
  3. Ambre, A.H., Katti, K.S., Katti, D.R.: Nanoclay based composite scaffolds for bone tissue engineering applications. J Nanotechnol. Eng. Med. 1, 031013 (2010)CrossRefGoogle Scholar
  4. Arora, A., Padua, G.: Review: nanocomposites in food packaging. J. Food Sci. 75, R43–R49 (2010)CrossRefGoogle Scholar
  5. Azeredo, H.M.C.D.: Nanocomposites for food packaging applications. Food Res. Int. 42, 1240–1253 (2009). doi: 10.1016/j.foodres.2009.03.019 CrossRefGoogle Scholar
  6. Bertini, F., Canetti, M., Audisio, G., Costa, G., Falqui, L.: Characterization and thermal degradation of polypropylene–montmorillonite nanocomposites. Polym. Degrad. Stab. 91, 600–605 (2006)CrossRefGoogle Scholar
  7. Bhattacharya, S., Aadhar, M.: Studies on preparation and analysis of organoclay nano particles. Res. J. Eng. Sci. 3, 10 (2014)Google Scholar
  8. Bordes, P., Pollet, E., Avérous, L.: Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 34, 125–155 (2009)CrossRefGoogle Scholar
  9. Carretero, M.I., Pozo, M.: Clay and non-clay minerals in the pharmaceutical industry: part I. Excipients and medical applications. Appl. Clay Sci. 46, 73–80 (2009)CrossRefGoogle Scholar
  10. Carretero, M.I., Pozo, M.: Clay and non-clay minerals in the pharmaceutical and cosmetic industries part II. Active ingredients. Appl Clay Sci. 47, 171–181 (2010)CrossRefGoogle Scholar
  11. Cui, L., Paul, D.: Polymer nanocomposites from organoclays: Structure and properties. Paper presented at the Macromol Sy (2011)Google Scholar
  12. Dadbin, S., Noferesti, M., Frounchi, M.: Oxygen Barrier LDPE/LLDPE/Organoclay Nano‐Composite Films for Food Packaging. Paper presented at the Macromol Sy (2008)Google Scholar
  13. Du, M., Guo, B., Jia, D.: Newly emerging applications of halloysite nanotubes: a review. Polym. Int. 59, 574–582 (2010)Google Scholar
  14. Duncan, T.V.: Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24 (2011)CrossRefGoogle Scholar
  15. Durmuş, A., Woo, M., Kaşgöz, A., Macosko, C.W., Tsapatsis, M.: Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. Eur. Polym. J. 43, 3737–3749 (2007)CrossRefGoogle Scholar
  16. Echegoyen, Y., Rodríguez, S., Nerín, C.: Nanoclay migration from food packaging materials. Food Addit Contam. Part A (2016)Google Scholar
  17. Fernandes, F.M., Baradari, H., Sanchez, C.: Integrative strategies to hybrid lamellar compounds: an integration challenge. Appl. Clay Sci. 100, 2–21 (2014). doi: 10.1016/j.clay.2014.05.013 CrossRefGoogle Scholar
  18. Floody, M.C., Theng, B., Reyes, P., Mora, M.: Natural nanoclays: applications and future trends–a Chilean perspective. Clay Miner. 44, 161–176 (2009)CrossRefGoogle Scholar
  19. Garrido-Ramírez, E., Theng, B., Mora, M.: Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review. Appl. Clay Sci. 47, 182–192 (2010)CrossRefGoogle Scholar
  20. Giannakas, A., Spanos, C., Kourkoumelis, N., Vaimakis, T., Ladavos, A.: Preparation, characterization and water barrier properties of PS/organo-montmorillonite nanocomposites. Eur. Polym. J. 44, 3915–3921 (2008)CrossRefGoogle Scholar
  21. Goettler, L., Lee, K., Thakkar, H.: Layered silicate reinforced polymer nanocomposites: development and applications. Polym. Rev. 47, 291–317 (2007)CrossRefGoogle Scholar
  22. Grunlan, J.C., Grigorian, A., Hamilton, C.B., Mehrabi, A.R.: Effect of clay concentration on the oxygen permeability and optical properties of a modified poly (vinyl alcohol). J. Appl. Polym. Sci. 93, 1102–1109 (2004)CrossRefGoogle Scholar
  23. Hakamy, A., Shaikh, F., Low, I.: Characteristics of nanoclay and calcined nanoclay-cement nanocomposites. Compos. Part B-Eng. 78, 174–184 (2015)CrossRefGoogle Scholar
  24. Hemati, F., Garmabi, H.: Compatibilised LDPE/LLDPE/nanoclay nanocomposites: I. Structural, mechanical, and thermal properties. Can. J. Chem. Eng. 89, 187–196 (2011)CrossRefGoogle Scholar
  25. Hotta, S., Paul, D.: Nanocomposites formed from linear low density polyethylene and organoclays. Polymer 45, 7639–7654 (2004)CrossRefGoogle Scholar
  26. Jeong, G., Achterberg, E.P.: Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys. 14, 12415–12428 (2014)CrossRefGoogle Scholar
  27. Kádár, F., Százdi, L., Fekete, E., Pukánszky, B.: Surface characteristics of layered silicates: influence on the properties of clay/polymer nanocomposites. Langmuir 22, 7848–7854 (2006)CrossRefGoogle Scholar
  28. Lee, S.M., Tiwari, D.: Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview. Appl. Clay Sci. 59–60, 84–102 (2012). doi: 10.1016/j.clay.2012.02.006 CrossRefGoogle Scholar
  29. Liu, M., Jia, Z., Jia, D., Zhou, C.: Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 39, 1498–1525 (2014)CrossRefGoogle Scholar
  30. Lvov, Y., Abdullayev, E.: Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog. Polym. Sci. 38, 1690–1719 (2013)CrossRefGoogle Scholar
  31. Majeed, K., Hassan, A., Abu Bakar, A.: Barrier, Biodegradation, and mechanical properties of (Rice husk)/(Montmorillonite) hybrid filler‐filled low‐density polyethylene nanocomposite films. J. Vinyl and Addit. Technol. (2015)Google Scholar
  32. Majeed, K., Hassan, A., Bakar, A., Jawaid, M.: Effect of montmorillonite (MMT) content on the mechanical, oxygen barrier, and thermal properties of rice husk/MMT hybrid filler-filled low-density polyethylene nanocomposite blown films. J. Thermoplast. Compos. 0892705714554492 (2014)Google Scholar
  33. Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, H.P. S., Salema, A.A., Inuwa, I.: Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 46, 391–410 (2013). doi: Google Scholar
  34. Mitra, G.B.: Spiral structure of 7 Å halloysite: mathematical models. Clay Clay Miner. 61, 499–507 (2013)CrossRefGoogle Scholar
  35. Morawiec, J., Pawlak, A., Slouf, M., Galeski, A., Piorkowska, E., Krasnikowa, N.: Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. Eur. Polym. J. 41, 1115–1122 (2005)CrossRefGoogle Scholar
  36. Murray, H.H.: Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl. Clay Sci. 17, 207–221 (2000)CrossRefGoogle Scholar
  37. Muthu, R.N., Rajashabala, S., Kannan, R.: Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium. Renew. Energ. 90, 554–564 (2016)CrossRefGoogle Scholar
  38. Nagendrappa, G.: Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 53, 106–138 (2011)CrossRefGoogle Scholar
  39. Nazarenko, S., Meneghetti, P., Julmon, P., Olson, B., Qutubuddin, S.: Gas barrier of polystyrene montmorillonite clay nanocomposites: effect of mineral layer aggregation. J Polym. Sci. Polym. Phys. 45, 1733–1753 (2007)CrossRefGoogle Scholar
  40. Ouellet-Plamondon, C., Lynch, R.J., Al-Tabbaa, A.: Comparison between granular pillared, organo-and inorgano–organo-bentonites for hydrocarbon and metal ion adsorption. Appl. Clay Sci. 67, 91–98 (2012)CrossRefGoogle Scholar
  41. Pasbakhsh, P., Churchman, G.J., Keeling, J.L.: Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci. 74, 47–57 (2013)CrossRefGoogle Scholar
  42. Patel, H.A., Somani, R.S., Bajaj, H.C., Jasra, R.V.: Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. B Mater. Sci. 29, 133–145 (2006)CrossRefGoogle Scholar
  43. Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008). doi: 10.1016/j.polymer.2008.04.017 CrossRefGoogle Scholar
  44. Pavlidou, S., Papaspyrides, C.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)CrossRefGoogle Scholar
  45. Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)CrossRefGoogle Scholar
  46. Sanchez-Garcia, M., Gimenez, E., Lagaron, J.: Novel PET nanocomposites of interest in food packaging applications and comparative barrier performance with biopolyester nanocomposites. J. Plast. Film Sheeting 23, 133–148 (2007)CrossRefGoogle Scholar
  47. Santos, K., Liberman, S., Oviedo, M., Mauler, R.: Optimization of the mechanical properties of polypropylene-based nanocomposite via the addition of a combination of organoclays. Compos. Part A-Appl. S 40, 1199–1209 (2009)CrossRefGoogle Scholar
  48. Shahidi, S., Ghoranneviss, M.: Effect of plasma pretreatment followed by nanoclay loading on flame retardant properties of cotton fabric. J. Fusion Energ. 33, 88–95 (2014)CrossRefGoogle Scholar
  49. Silvestre, C., Duraccio, D., Cimmino, S.: Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36, 1766–1782 (2011)CrossRefGoogle Scholar
  50. Su, F.-H., Huang, H.-X., Zhao, Y.: Microstructure and mechanical properties of polypropylene/poly (ethylene-co-octene copolymer)/clay ternary nanocomposites prepared by melt blending using supercritical carbon dioxide as a processing aid. Compos. Part B-Eng. 42, 421–428 (2011)CrossRefGoogle Scholar
  51. Suresh, R., Borkar, S., Sawant, V., Shende, V., Dimble, S.: Nanoclay drug delivery system. Int. J. Pharm. Sci. Nanotechnol. 3, 901–905 (2010)Google Scholar
  52. Tabuani, D., Ceccia, S., Camino, G.: Polypropylene nanocomposites, study of the influence of the nanofiller nature on morphology and material properties. Paper presented at the Macromol Sy (2011)Google Scholar
  53. Tjong, S.: Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R 53, 73–197 (2006)CrossRefGoogle Scholar
  54. Uddin, F.: Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 39, 2804–2814 (2008)CrossRefGoogle Scholar
  55. Yah, W.O., Xu, H., Soejima, H., Ma, W., Lvov, Y., Takahara, A.: Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J. Am. Chem. Soc. 134, 12134–12137 (2012). doi: 10.1021/ja303340f CrossRefGoogle Scholar
  56. Yoon, K.-B., Sung, H.-D., Hwang, Y.-Y., Noh, S.K., Lee, D.-H.: Modification of montmorillonite with oligomeric amine derivatives for polymer nanocomposite preparation. Appl. Clay Sci. 38, 1–8 (2007)CrossRefGoogle Scholar
  57. Yu, F., Deng, H., Bai, H., Zhang, Q., Wang, K., Chen, F., Fu, Q.: Confine clay in an alternating multilayered structure through injection molding: a simple and efficient route to improve barrier performance of polymeric materials. ACS Appl. Mater. Interfaces 7, 10178–10189 (2015)CrossRefGoogle Scholar
  58. Yuan, G., Wu, L.: Allophane nanoclay for the removal of phosphorus in water and wastewater. Sci. Technol. Adv. Mater. 8, 60–62 (2007)CrossRefGoogle Scholar
  59. Yuan, P., Southon, P.D., Liu, Z., Green, M.E., Hook, J.M., Antill, S.J., Kepert, C.J.: Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 112, 15742–15751 (2008)CrossRefGoogle Scholar
  60. Yuan, P., Tan, D., Annabi-Bergaya, F.: Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl. Clay Sci. 112, 75–93 (2015)CrossRefGoogle Scholar
  61. Zanetti, M., Costa, L.: Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polymer 45, 4367–4373 (2004)CrossRefGoogle Scholar
  62. Zhang, D., Zhou, C.-H., Lin, C.-X., Tong, D.-S., Yu, W.-H.: Synthesis of clay minerals. Appl. Clay Sci. 50, 1–11 (2010). doi: 10.1016/j.clay.2010.06.019 CrossRefGoogle Scholar
  63. Zhang, J., Hereid, J., Hagen, M., Bakirtzis, D., Delichatsios, M., Fina, A., Bourbigot, S.: Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Saf. J. 44, 504–513 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Muhammad Shahid Nazir
    • 1
  • Mohamad Haafiz Mohamad Kassim
    • 2
  • Lagnamayee Mohapatra
    • 3
  • Mazhar Amjad Gilani
    • 1
    • 4
  • Muhammad Rafi Raza
    • 5
  • Khaliq Majeed
    • 1
    • 3
    Email author
  1. 1.Department of Chemical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.School of Industrial TechnologyUniversiti Sains MalaysiaGeorge TownMalaysia
  3. 3.Center for Advanced Materials, Qatar UniversityDohaQatar
  4. 4.Department of ChemistryCollege of Science and Humanities, Prince Sattam bin Abdulaziz UniversityAlkharjSaudi Arabia
  5. 5.Department of Mechanical EngineeringCOMSATS Institute of Information TechnologySahiwalPakistan

Personalised recommendations