Enhanced Kinetic Energy Entrainment in Wind Farm Wakes: Large Eddy Simulation Study of a Wind Turbine Array with Kites

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Wake effects in wind farms are a major source of power production losses and fatigue loads on the rotors. It has been demonstrated that in large wind farms the only source of kinetic energy to balance the energy extracted by the turbines is the vertical transport of the free-stream flow kinetic energy from above the wind turbine canopy. This chapter explores the possibility to enhance this transport process by introducing kites in steady flight within a small wind turbine array. In a first step, an array of four wind turbines, aligned with the streamwise velocity component, is simulated within a large eddy simulation framework. The turbines are placed in a pre-generated turbulent atmospheric boundary layer and modeled as actuator disks with both axial and tangential inductions, to account for the wake rotation. In a second step an identical turbine configuration with interspersed kites is investigated. The kites are modeled as body forces on the flow, equal in magnitude and opposite in direction to the vector sum of the lift and drag forces acting on the kite surfaces. A qualitative comparison of the mean flow statistics, before and after the introduction of the kites is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments and gratefully acknowledge the contribution of Dhruv Mehta and Lorenzo Lignarolo for their expert advice on the wide range of topics treated in the present work.

References

  1. 1.
    Ahmed, M., Hably, A., Bach, S.: High Altitude Wind Power Systems: A Survey on Flexible Power Kites. In: Proceedings of the 2012 XXth International Conference on Electrical Machines, pp. 2085–2091, Marseille, France, 2–5 Sept 2012.  https://doi.org/10.1109/ICEIMach.2012.6350170
  2. 2.
    Ammara, I., Leclerc, C., Masson, C.: A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms. Journal of Solar Energy Engineering 124(4), 345–356 (2002).  https://doi.org/10.1115/1.1510870
  3. 3.
    Annoni, J., Seiler, P., Johnson, K., Fleming, P., Gebraad, P.: Evaluating wake models for wind farm control. In: Proceedings of the 2014 American Control Conference, pp. 2517–2523, IEEE, Portland, OR, USA, 4–6 June 2014.  https://doi.org/10.1109/ACC.2014.6858970
  4. 4.
    Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J. G., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E. S., Chaviaropoulos, P. K.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy 12(5), 431–444 (2009).  https://doi.org/10.1002/we.348
  5. 5.
    Bitar, E., Seiler, P.: Coordinated control of a wind turbine array for power maximization. In: Proceedings of the 2013 American Control Conference, pp. 2898–2904, IEEE, Washington, DC, USA, 17–19 June 2013.  https://doi.org/10.1109/ACC.2013.6580274
  6. 6.
    Boonman, D., Broich, C., Deerenberg, R., Groot, K., Hamraz, A., Kalthof, R., Nieuwint, G., Schneiders, J., Tang, Y., Wiegerink, J.: Wind Farm efficiency. S12, Delft University of Technology, Delft, Netherlands, 2011. http://resolver.tudelft.nl/uuid:9ec5078c-c02a-43db-99b9-00bde8871b58
  7. 7.
    Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E.: Wind Energy Handbook. 2nd ed. JohnWiley & Sons, Ltd, Chichester (2011).  https://doi.org/10.1002/9781119992714
  8. 8.
    Cal, R. B., Lebrón, J., Castillo, L., Kang, H. S., Meneveau, C.: Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. Journal of Renewable and Sustainable Energy 2(1), 013106 (2010).  https://doi.org/10.1063/1.3289735
  9. 9.
    Calaf, M., Meneveau, C., Meyers, J.: Large eddy simulation study of fully developed windturbine array boundary layers. Physics of Fluids 22, 015110 (2010).  https://doi.org/10.1063/1.3291077
  10. 10.
    Castro, I.: CFD for external aerodynamics in the built environment. The QNET-CFD Network Newsletter 2(2), 4–7 (2003)Google Scholar
  11. 11.
    DNV GL: Wind farm design tool WindFarmer. https://www.dnvgl.com/services/windfarmer-3766. Accessed 1 Nov 2016
  12. 12.
    Dobrev, I., Massouh, F., Rapin, M.: Actuator surface hybrid model. In: Journal of Physics: Conference Series, vol. 75, 1, p. 012019, (2007).  https://doi.org/10.1088/1742-6596/75/1/012019
  13. 13.
    DTU Wind Energy: Wind Atlas Analysis and Application Program (WAsP). http://www.wasp.dk/. Accessed 1 Nov 2016
  14. 14.
    EMD International A/S: Software package windPRO. http://www.emd.dk/windpro/. Accessed 1 Nov 2016
  15. 15.
    Fritz, F.: Application of an Automated Kite System for Ship Propulsion and Power Generation. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 20, pp. 359–372. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_20
  16. 16.
    Jarrin, N., Benhamadouche, S., Addad, Y., Laurence, D.: Synthetic turbulent inflow conditions for large eddy simulation. In: Proceedings of the 4th International Turbulence, Heat and Mass Transfer Conference, Antalya, Turkey, 12–17 Oct 2003Google Scholar
  17. 17.
    Jimenez, A., Crespo, A., Migoya, E., Garcia, J.: Advances in large-eddy simulation of a wind turbine wake. In: Journal of Physics: Conference Series, vol. 75, p. 012041, (2007).  https://doi.org/10.1088/1742-6596/75/1/012041
  18. 18.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  19. 19.
    Madsen, H. A.: A CFD analysis of the actuator disc flow compared with momentum theory results. In: Proceedings of the 10th IEA Symposium on the Aerodynamics of Wind Turbines, pp. 109–124, Edinburgh, UK, 16–17 Dec 1996Google Scholar
  20. 20.
    Meyers, J., Meneveau, C.: Large eddy simulations of large wind-turbine arrays in the atmospheric boundary layer. AIAA Paper 2010-827. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 4–7 Jan 2010.  https://doi.org/10.2514/6.2010-827
  21. 21.
    Meyers, J., Meneveau, C.: Optimal turbine spacing in fully developed wind farm boundary layers. Wind Energy 15(2), 305–317 (2012).  https://doi.org/10.1002/we.469
  22. 22.
    Ploumakis, E.: Improving the Wind Farm efficiency by simple means – LES study of a wind turbine array with tethered kites. M.Sc.Thesis, Delft University of Technology, 2015. http://resolver.tudelft.nl/uuid:a273b26a-b4bd-4388-8eee-193c6d22626b
  23. 23.
    Ploumakis, E., Mehta, D., Lignarolo, L., Bierbooms, W.: Enhanced Kinetic Energy Entrainment in Wind FarmWakes – LES Study of a Wind Turbine Array with Tethered Kites. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 52, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/383929c21f734297ba296717de3d17371d
  24. 24.
    Schmehl, R., Noom, M., Vlugt, R. van der: Traction Power Generation with Tethered Wings. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 2, pp. 23–45. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_2
  25. 25.
    Smirnov, A., Shi, S., Celik, I.: Random flow generation technique for large eddy simulations and particle-dynamics modeling. Journal of Fluids Engineering 123(2), 359–371 (2001).  https://doi.org/10.1115/1.1369598
  26. 26.
    Stevens, R. J. A. M., Gayme, D. F., Meneveau, C.: Effects of turbine spacing on the power output of extended wind-farms. Wind Energy 19(2), 359–370 (2016).  https://doi.org/10.1002/we.1835
  27. 27.
    Stevens, R. J. A. M., Gayme, D. F., Meneveau, C.: Large eddy simulation studies of the effects of alignment and wind farm length. Journal of Renewable and Sustainable Energy 6(2) (2014).  https://doi.org/10.1063/1.4869568
  28. 28.
    Troldborg, N.: Actuator line modeling of wind turbine wakes. Ph.D. Thesis, Technical University of Denmark, 2009. http://orbit.dtu.dk/files/5289075/niels_troldborg.pdf
  29. 29.
    Troldborg, N., Sorensen, J. N., Mikkelsen, R.: Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow. Journal of Physics: Conference Series 75, 012063 (2007).  https://doi.org/10.1088/1742-6596/75/1/012063
  30. 30.
    Wachter, A. de: Deformation and Aerodynamic Performance of a Ram-Air Wing. M.Sc.Thesis, Delft University of Technology, 2008. http://resolver.tudelft.nl/uuid:786e3395-4590-4755-829f-51283a8df3d2
  31. 31.
    Wright, N. G., Easom, G. J.: Non-linear k-e turbulence model results for flow over a building at full-scale. Applied Mathematical Modelling 27(12), 1013–1033 (2003).  https://doi.org/10.1016/s0307-904X(03)00123-9
  32. 32.
    Wu, Y.-T., Porté-Agel, F.: Atmospheric turbulence effects on wind-turbine wakes: An LES study. Energies 5(12), 5340–5362 (2012).  https://doi.org/10.3390/en5125340
  33. 33.
    Wu, Y.-T., Porté-Agel, F.: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects. Boundary-layer meteorology 146(2), 181–205 (2013).  https://doi.org/10.1007/s10546-012-9757-y

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations