A Roadmap Towards Airborne Wind Energy in the Utility Sector

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The development path of the Ampyx Power airborne wind energy system is described. It is intended for the utility sector and large-scale grid connection. The technology generates energy by flying a tethered glider-aircraft attached to a ground-based generator following a crosswind pattern as the tether unwinds under high tension, and rewinds under near-zero tension. The benefits, drawbacks and decision rationales of major design choices are discussed: crosswind operation, rigid aircraft concept, ground-based generator. The development plan is shared and an indication is given how we defined our performance targets by prototype tests and extrapolations based on validated dynamic simulation. The development plan is to first build a system aimed to demonstrate safety and autonomy. Next, the first commercial system shall minimize Levelized Cost of Energy (maximizing the customer’s return on investment). A larger system then maximizes productivity (maximizing the customer’s net profit). Offshore operation is targeted. Safety levels are continuously improved to enable co-use of the land under the tethered aircraft.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The financial support of the European Commission through the project AMPYXAP3 (H2020-SMEINST-666793) is gratefully acknowledged.

References

  1. 1.
    Bormann, A., Ranneberg, M., Kövesdi, P., Gebhardt, C., Skutnik, S.: Development of a Three-Line Ground-Actuated Airborne Wind Energy Converter. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 24, pp. 427–437. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_24
  2. 2.
    Bosman, R., Reid, V., Vlasblom, M., Smeets, P.: Airborne Wind Energy Tethers with High-Modulus Polyethylene Fibers. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 33, pp. 563–585. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_33
  3. 3.
    Breukelman, P., Kruijff, M., Fujii, H. A., Maruyama, Y.: A new wind-power generation method employed with high altitude wind. In: Proceedings of Grand Renewable Energy 2014 International Conference, Tokyo, Japan, 27 July–1 Aug 2014Google Scholar
  4. 4.
    Dunker, S.: Ram-Air Wing Design Considerations for Airborne Wind Energy. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 31, pp. 517–546. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_31
  5. 5.
    Goldstein, L.: Density of Individual Airborne Wind Energy Systems in AWES Farms. http://www.awelabs.com/wp-content/uploads/AWES_Farm_Density.pdf (2014). Accessed 19 May 2016
  6. 6.
    Jung, T. P.:Wind Tunnel Study of Drag of Various Rope Designs. AIAA Paper 2009-3608. In: Proceedings of the 27th AIAA Applied Aerodynamics Conference, San Antonio, TX, USA, 22–25 June 2009.  https://doi.org/10.2514/6.2009-3608
  7. 7.
    Kruijff, M.: Tethers in Space, A propellantless propulsion in-orbit demonstration. Ph.D. Thesis, Delft University of Technology, 2011. http://resolver.tudelft.nl/uuid:9d437e58-82c0-4af1-935f-69ba5573c7a2
  8. 8.
    Kruijff, M., Ruiterkamp, R.: Status and Development Plan of the PowerPlane of Ampyx Power. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 18–21, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/2e1f967767d541b1b1f2c912e8eff7df1d
  9. 9.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  10. 10.
    Ruiterkamp, R., Sieberling, S.: Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 26, pp. 443–458. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_26
  11. 11.
    Society of Automotive Engineers: Quality Management Systems – Requirements for Aviation, Space and Defense Organizations, AS9100. http://standards.sae.org/as9100d/
  12. 12.
    Vander Lind, D.: Analysis and Flight Test Validation of High Performance Airborne Wind Turbines. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 28, pp. 473–490. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_28

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Ampyx Power B.VThe HagueThe Netherlands

Personalised recommendations