Advertisement

Kite Networks for HarvestingWind Energy

  • Roderick Read
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter presents a simple new wind energy concept based on airborne rotary power generation and tensile rotary power transfer to the ground. The inexpensive prototypes use flexible inflatable wings that are arranged on ring kites, similar to how the rotor blades of a wind turbine are arranged on the hub. These autorotating rotary ring kites are stacked and integrated into a tensile structure that transfers the collected rotational power to a ground-based generator. A separate lifting kite provides additional lift to elevate the stack of rotary ring kites. Simulations and prototype testing show that network kite rigging provides the stabilizing benefits of wide tethering to networked individual kites even during fast flight for power generation. Turbulence effects are largely smoothed on individual kites. Stacked rotary ring kites can be integrated into a lattice of interconnected lifting kites, to concurrently run, at close proximity and thus allowing for greater land use efficiency. Solutions for joining the work of multiple ground stations to a single, more efficient generator are discussed. Software for kite network design is discussed. The designs are licensed as open source hardware to encourage engagement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author would like to thank the anonymous donor of a €5000 research sponsorship, which allowed much of this work to go ahead. The ratios of prototype power and efficiency per cost of development are amazing. My friends and family have been incredibly patient with me throughout this work. A host of advice has come from online AWES forums. Thanks also to the peer review group for good advice. Thanks to Roland Schmehl for a fantastic reorganisation of this paper. Thanks mum for the challenge: I hope you enjoyed your cup of tea.

References

  1. 1.
    Ahrens, U., Pieper, B., Töpfer, C.: Combining Kites and Rail Technology into a Traction-Based Airborne Wind Energy Plant. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 25, pp. 437–441. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_25
  2. 2.
    Benhaïem, P.: Rotating Reeling. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 100, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Poster available from: http://www.awec2015.com/images/posters/AWEC25_Benhaiem-poster.pdf
  3. 3.
    Bormann, A., Ranneberg, M., Kövesdi, P., Gebhardt, C., Skutnik, S.: Development of a Three-Line Ground-Actuated Airborne Wind Energy Converter. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 24, pp. 427–437. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_24
  4. 4.
    Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Nonlinear Aeroelasticity, Flight Dynamics and Control of a Flexible Membrane Traction Kite. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 17, pp. 307–323. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_17
  5. 5.
    Breukels, J.: An Engineering Methodology for Kite Design. Ph.D. Thesis, Delft University of Technology, 2011. http://resolver.tudelft.nl/uuid:cdece38a-1f13-47cc-b277-ed64fdda7cdf
  6. 6.
    Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E.:Wind Energy Handbook. 2nd ed. JohnWiley & Sons, Ltd, Chichester (2011).  https://doi.org/10.1002/9781119992714
  7. 7.
    Dunker, S.: Ram-Air Wing Design Considerations for Airborne Wind Energy. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 31, pp. 517–546. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_31
  8. 8.
    Harburg, R. W.: Coaxial Multi-turbine generator. US Patent 5,040,948, Aug 1991Google Scholar
  9. 9.
    Kite Power Systems. http://www.kitepowersystems.com/. Accessed 10 July 2017
  10. 10.
    Lynn, P.: Pilot Tuning – Twenty pilot kites flying side by side, stable and straight. http://www.peterlynnhimself.com/Pilot_Tuning.php. Accessed 10 Oct 2017
  11. 11.
    Read, R.: 3 stack Daisy flying wind turbine 608W test 4 Dec 2017. https://www.youtube.com/watch?v=x6btemB3hKo (2017). Accessed 15 Dec 2017
  12. 12.
    Rimkus, S., Das, T.: An Application of the Autogyro Theory to Airborne Wind Energy Extraction. Paper DSCC2013-3840. In: Proceedings of the ASME 2013 Dynamic Systems and Control Conference, vol. 3, Palo Alto, CA, USA, 21–23 Oct 2013.  https://doi.org/10.1115/dscc2013-3840
  13. 13.
    Roberts, B. http://altitudeenergy.com.au/. Accessed 30 June 2016
  14. 14.
    Ruiterkamp, R., Sieberling, S.: Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 26, pp. 443–458. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_26
  15. 15.
    Santos, D.: Toward Gigawatt-scale Kite Energy. In: Diehl, M. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2011, p. 39, Leuven, Belgium, 24–25 May 2011. http://resolver.tudelft.nl/uuid:0677ccde-8335-40e6-afcf-c56317d52864
  16. 16.
    Schmehl, R., Noom, M., Vlugt, R. van der: Traction Power Generation with Tethered Wings. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 2, pp. 23–45. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_2
  17. 17.
    Selsam, D. S.: Serpentine Wind Turbine. US Patent 6,616,402, June 2001Google Scholar
  18. 18.
    The Airborne Wind Energy Community. http://www.someawe.org. Accessed 3 July 2016
  19. 19.
    Vlugt, R. van der, Peschel, J., Schmehl, R.: Design and Experimental Characterization of a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 23, pp. 403–425. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_23
  20. 20.
    Yahoo! Groups: Airborne Wind Energy Forum. https://groups.yahoo.com/neo/groups/AirborneWindEnergy/info. Accessed 8 July 2016

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Windswept and Interesting LtdIsle of LewisUK

Personalised recommendations