Multicopter-Based Launching and Landing of Lift Power Kites

  • Florian Bauer
  • Christoph M. Hackl
  • Keyue Smedley
  • Ralph M. Kennel
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Crosswind kite power is a promising alternative wind power technology. However, unlike the rotor blades of a conventional wind turbine, a kite needs to be launched prior to power generation and needs to be landed during low-wind conditions or for maintenance. This study proposes multicopter-based concepts for an autonomous solution. Basic system components and different system configurations are discussed. Static and dynamic feasibility analyses are carried out. Results show that such systems are feasible and have advantages compared to other launching and landing concepts. However, also the weaknesses of such systems become apparent e.g. the increased airborne mass.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments. This study was supported by Bund der Freunde der TU München e.V.

References

  1. 1.
    Advance Thun AG: Alpha 6. http://www.advance.ch/de/alpha. Accessed 20 Jan 2016
  2. 2.
    Ahrens, U., Diehl, M., Schmehl, R. (eds.): Airborne Wind Energy. Green Energy and Technology. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7
  3. 3.
    Alula Energy Oy: Takeoff and landing system - Airborne Wind Energy and Tethered UAV. http://vimeo.com/78090844. Accessed 20 Jan 2016
  4. 4.
    Bauer, F., Hackl, C. M., Smedley, K., Kennel, R.: On Multicopter-Based Launch and Retrieval Concepts for Lift Mode Operated Power Generating Kites. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 92–93, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/a303417db9114a9f876819208bd889c71d
  5. 5.
    Bontekoe, E.: How to Launch and Retrieve a Tethered Aircraft. M.Sc.Thesis, Delft University of Technology, 2010. http://resolver.tudelft.nl/uuid:0f79480b-e447-4828-b239-9ec6931bc01f
  6. 6.
    Breukels, J.: Kite launch using an aerostat. Technical Report, Delft University of Technology, 21 Aug 2007. http://repository.tudelft.nl/view/ir/uuid%3A1a0c6dfd-6115-461f-ac04-bd8751efd6fb
  7. 7.
    Brink, A. van den: Design of the e-50 Ground Station. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 34–35, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/eec678673e7b4056961269ab59fd4d6b1d
  8. 8.
    Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015).  https://doi.org/10.1016/j.rser.2015.07.053
  9. 9.
    Conrad Electronic SE: Modellbau-Akkupack (LiPo) 22.2 V 5000 mAh 40 C. https://www.conrad.de/de/modellbau-akkupack-lipo-222-v-5000-mah-40-c-conrad-energy-offenekabelenden-239016.html. Accessed 20 Jan 2016
  10. 10.
    Enerkite GmbH. http://www.enerkite.com/. Accessed 14 Jan 2016
  11. 11.
    Erhard, M., Strauch, H.: Control of Towing Kites for Seagoing Vessels. IEEE Transactions on Control Systems Technology 21(5), 1629–1640 (2013).  https://doi.org/10.1109/TCST.2012.2221093
  12. 12.
    EvoLogics GmbH: Bionic Loop Propeller. http://www.evologics.de/en/products/propeller/index.html. Accessed 20 Jan 2016
  13. 13.
    Fagiano, L., Zgraggen, A. U., Morari, M., Khammash, M.: Automatic crosswind flight of tethered wings for airborne wind energy:modeling, control design and experimental results. IEEE Transactions on Control System Technology 22(4), 1433–1447 (2014).  https://doi.org/10.1109/TCST.2013.2279592
  14. 14.
    Fagiano, L., Schnez, S.: The Take-Off of an Airborne Wind Energy System Based on Rigid Wings. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 94–95, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/2ebb3eb4871a49b7ad70560644cb3e2c1d
  15. 15.
    Fechner, U., Schmehl, R.: Design of a Distributed Kite Power Control System. In: Proceedings of the 2012 IEEE International Conference on Control Applications, pp. 800–805, Dubrovnik, Croatia, 3–5 Oct 2012.  https://doi.org/10.1109/CCA.2012.6402695
  16. 16.
    Filippone, A.: Advanced Aircraft Flight Performance. 1st ed. Cambridge University Press (2012).  https://doi.org/10.1017/CBO9781139161893
  17. 17.
    Geebelen, K., Ahmad, H., Vukov, M., Gros, S., Swevers, J., Diehl, M.: An experimental test set-up for launch/recovery of an Airborne Wind Energy (AWE) system. In: Proceedings of the 2012 American Control Conference, pp. 5813–5818, Montréal, QC, Canada, 27–29 June 2012.  https://doi.org/10.1109/ACC.2012.6315033
  18. 18.
    Geebelen, K.: Design and Operation of Airborne Wind Energy Systems.Experimental Validation of Moving Horizon Estimation for PoseEstimation. Ph.D. Thesis, KU Leuven, 2015. https://lirias.kuleuven.be/handle/123456789/485714
  19. 19.
    Geebelen, K., Gillis, J.: Modelling and control of rotational start-up phase of tethered aeroplanes for wind energy harvesting. M.Sc.Thesis, KU Leuven, June 2010Google Scholar
  20. 20.
    Gillis, J., Goos, J., Geebelen, K., Swevers, J., Diehl, M.: Optimal periodic control of power harvesting tethered airplanes. In: Proceedings of the 2012 American Control Conference, pp. 2527–2532, Montréal, QC, Canada, 27–29 June 2012. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6314924
  21. 21.
    Hardham, C.: Response to the Federal Aviation Authority. Docket No.: FAA-2011-1279; Notice No. 11-07; Notification for Airborne Wind Energy Systems (AWES), Makani Power, 7 Feb 2012. https://www.regulations.gov/#!documentDetail;D=FAA-2011-1279-0014
  22. 22.
    Haug, S.: Design of a Kite Launch and Retrieval System For a Pumping High Altitude Wind Power Generator. M.Sc.Thesis, University of Stuttgart, 2012.  https://doi.org/10.18419/opus-3936
  23. 23.
    Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007Google Scholar
  24. 24.
    IBC Solar AG: IBC FlexiSun 2,5/4/6/10/16 mm2 PV1-F. http://www.photovoltaik-shop.com/downloads/dl/file/id/312/solarkabel_ibc_flexisun_1x2_5_16mm_datenblatt_pdf.pdf. Accessed 20 Jan 2016
  25. 25.
    Ippolito, M.: System and process for starting the flight of power wing airfoils, in particular for wind generator. Patent WO2014199406 A1, Dec 2014Google Scholar
  26. 26.
    Joby Motors, Inc.: JM1. http://www.jobymotors.com/public/views/pages/jm1.php. Accessed 20 Jan 2016
  27. 27.
    KiteGen. http://kitegen.com. Accessed 20 Jan 2016
  28. 28.
    Kitemill. http://kitemill.com. Accessed 20 Jan 2016
  29. 29.
    KitePower. http://www.kitepower.eu. Accessed 29 Apr 2015
  30. 30.
    Kruijff, M., Ruiterkamp, R.: Status and Development Plan of the PowerPlane of Ampyx Power. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 18–21, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/2e1f967767d541b1b1f2c912e8eff7df1d
  31. 31.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  32. 32.
    Luchsinger, R. H. et al.: Closing the Gap: Pumping Cycle Kite Power with Twings. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 26–28, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/646b794e7ac54320ba48ba9f41b41f811d
  33. 33.
    Makani Power/Google. http://www.google.com/makani. Accessed 14 Jan 2016
  34. 34.
    Moyes USA: Litespeed RS. http://www.moyesusa.com/products/litespeedRSspecs.html. Accessed 20 Jan 2016
  35. 35.
    NTS Nature Technology Systems. http://www.x-wind.de/en/. Accessed 20 Jan 2016
  36. 36.
    Schmehl, R.: Experimental setup for automatic launching and landing of a 25m2 traction kite. https://www.youtube.com/watch?v=w4oWs_zNpr8. Accessed 20 Jan 2016
  37. 37.
    Schmehl, R.: Traction Power Generation with Tethered Wings - A Quasi-Steady Model for the Prediction of the Power Output. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 38–39, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/02a6612b8d004580b08681efd10611351d
  38. 38.
    Skysails GmbH. http://www.skysails.info. Accessed 14 Jan 2016
  39. 39.
    Stoll, W., Fischer, M., Bormann, A., Skutnik, S.: CyberKite. http://www.festo.com/net/SupportPortal/Files/42084/CyberKite_en.pdf. Accessed 20 Jan 2016
  40. 40.
    Suominen, I., Berg, T.: Method and System for Towing a Flying Object. PatentWO2013156680 A1, Oct 2013Google Scholar
  41. 41.
    Wortmann, S.: Mast arrangement and method for starting and landing an aerodynamic wing. Patent WO2013164446 A1, Nov 2013Google Scholar
  42. 42.
    Zanon, M., Gros, S., Andersson, J., Diehl, M.: Airborne Wind Energy Based on Dual Airfoils. IEEE Transactions on Control Systems Technology 21(4), 1215–1222 (2013).  https://doi.org/10.1109/TCST.2013.2257781

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Florian Bauer
    • 1
  • Christoph M. Hackl
    • 2
  • Keyue Smedley
    • 3
  • Ralph M. Kennel
    • 1
  1. 1.Institute for Electrical Drive Systems and Power ElectronicsTechnical University of MunichMunichGermany
  2. 2.Munich School of Engineering, Research group “Control of renewable energy systems (CRES)”Technische Universität MünchenGarchingGermany
  3. 3.The Henry Samueli School of Engineering, Power Electronics LaboratoryUniversity of CaliforniaIrvineUSA

Personalised recommendations