A.,W. T., Hesse, H., Zgraggen, A. U., Smith, R. S.: Model-based Identification and Control of the Velocity Vector Orientation for Autonomous Kites. In: Proceedings of the 2015 American Control Conference, Chicago, IL, USA, 1–3 July 2015. https://doi.org/10.1109/ACC.2015.7171088
Anderson, B. D. O., Moore, J. B.: Optimal Filtering. English. Dover Publications, Mineola, N.Y., USA (2005)
Google Scholar
Appel, R., Fuchs, T., Dollár, P.: Quickly Boosting Decision Trees – Pruning Underachieving Features Early. In: International Conference on Machine Learning (ICML), vol. 28, pp. 594–602, Atlanta, USA, June 2013
Google Scholar
Autonomous Airborne Wind Energy Project (A2WE). http://a2we.skpwiki.ch. Accessed 31 Oct 2015
Bormann, A., Ranneberg, M., Kövesdi, P., Gebhardt, C., Skutnik, S.: Development of a Three-Line Ground-Actuated Airborne Wind Energy Converter. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 24, pp. 427–437. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_24
Bourdev, L., Brandt, J.: Robust object detection via soft cascade. In: Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 236–243, San Diego, CA, USA, June 2005. https://doi.org/10.1109/CVPR.2005.310
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893, San Diego, CA, USA (2005). https://doi.org/10.1109/CVPR.2005.177
Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast Feature Pyramids for Object Detection. 36(8), 1532–1545 (2014). https://doi.org/10.1109/TPAMI.2014.2300479
Dollár, P., Appel, R., Kienzle, W.: Crosstalk Cascades for Frame-Rate Pedestrian Detection. In: European Conference on Computer Vision, pp. 645–659, Florence, Italy (2012). https://doi.org/10.1007/978-3-642-33709-3_46
Erhard, M., Strauch, H.: Theory and Experimental Validation of a Simple Comprehensible Model of Tethered Kite Dynamics Used for Controller Design. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 8, pp. 141–165. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_8
Erhard, M., Strauch, H.: Sensors and Navigation Algorithms for Flight Control of Tethered Kites. In: Proceedings of the European Control Conference (ECC13), Zurich, Switzerland, 17–19 July 2013. arXiv:1304.2233 [cs.SY]
Ess, A., Leibe, B., Gool, L. V.: Depth and appearance for mobile scene analysis. In: International Conference on Computer Vision (ICCV), pp. 1–8, Rio de Janeiro, Brazil (2007). https://doi.org/10.1109/ICCV.2007.4409092
Fagiano, L., Zgraggen, A. U., Morari, M., Khammash, M.: Automatic crosswind flight of tethered wings for airborne wind energy:modeling, control design and experimental results. IEEE Transactions on Control System Technology 22(4), 1433–1447 (2014). https://doi.org/10.1109/TCST.2013.2279592
Fagiano, L., Huynh, K., Bamieh, B., Khammash, M.: On sensor fusion for airborne wind energy systems. IEEE Transactions on Control Systems Technology 22(3), 930–943 (2014). https://doi.org/10.1109/TCST.2013.2269865
Freund, Y., Schapire, R. E.: Experiments with a New Boosting Algorithm. In: International Conference on Machine Learning (ICML), pp. 148–156, Bari, Italy, July 1996
Google Scholar
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. The Annals of Statistics 28(2), 337–407 (2000)
Google Scholar
Gray, R. M.: Toeplitz and Circulant Matrices: A Review. Foundations and Trends in Communications and Information Theory 2(3), 155–239 (2006). https://doi.org/10.1561/0100000006
Heikkila, J., Silvén, O.: A four-step camera calibration procedure with implicit image correction. In: Conference on Computer Vision and Pattern Recognition, pp. 1106–1112, IEEE, San Juan, Puerto Rico, June 1997
Google Scholar
Henriques, J. F., Caseiro, R., Martins, P., Batista, J.: High-Speed Tracking with Kernelized Correlation Filters. 37(3), 583–596 (2015). https://doi.org/10.1109/TPAMI.2014.2345390
Lefferts, E. J., Markley, F. L., Shuster, M. D.: Kalman filtering for spacecraft attitude estimation. Journal of Guidance, Control, and Dynamics 5(5), 417–429 (1982)
Google Scholar
MATLAB® Computer Vision System ToolboxTM Reference, MathWorks, Inc., Natick, MA, USA, 2015. http://mathworks.com/products/computer-vision
Millane, A.,Wood, T. A., Hesse, H., Zgraggen, A. U., Smith, R. S.: Range-Inertial Estimation for Airborne Wind Energy. In: Conference on Decision and Control (CDC), pp. 455–460, Osaka, Japan, Dec 2015. https://doi.org/10.1109/CDC.2015.7402242
Pixhawk Autopilot. Accessed 31. October 2015. https://pixhawk.org/modules/pixhawk.
Polzin, M., Hesse, H., Wood, T. A., Smith, R. S.: Visual Motion Tracking for Estimation of Kite Dynamics. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 110, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Poster available from: http://www.awec2015.com/images/posters/AWEC42_Hesse-poster.pdf
Sabatini, A. M.: Kalman-filter-based orientation determination using inertial/magnetic sensors: Observability analysis and performance evaluation. Sensors 11(10), 9182–9206 (2011)
Google Scholar
Savage, P. G.: Strapdown Inertial Navigation Integration Algorithm Design Part 2: Velocity and Position Algorithms. Journal of Guidance, Control, and Dynamics 21(2), 208–221 (1998)
Google Scholar
Schölkopf, B., Herbrich, R., Smola, A. J.: A Generalized Representer Theorem. In: Computational Learning Theory, pp. 416–426. Springer-Verlag, Berlin, Germany (2001)
Google Scholar
Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press (2004)
Google Scholar
Smeulders, A.W. M., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: An experimental survey. 36(7), 1442–1468 (2014). https://doi.org/10.1109/TPAMI.2013.230
Speedgoat User Story: Efficiently harnessing wind power high above the ground using autonomous kites, Speedgoat GmbH, Liebefeld, Switzerland, 2015. https://www.speedgoat.ch/Portals/0/Content/UserStories/ethz_user_story.pdf
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518, (2001). https://doi.org/10.1109/CVPR.2001.990517
Wood, T. A., Hesse, H., Zgraggen, A. U., Smith, R. S.: Model-Based Flight Path Planning and Tracking for Tethered Wings. In: Conference on Decision and Control (CDC), pp. 6712–6717, Osaka, Japan, Dec 2015. https://doi.org/10.1109/CDC.2015.7403276
Wu, Y., Lim, J., Yang, M. H.: Online object tracking: A benchmark. In: Conference on Computer Vision and Pattern Recognition, pp. 2411–2418, (2013). https://doi.org/10.1109/CVPR.2013.312
Wu, Y., Lim, J., Yang, M.-H.: Object Tracking Benchmark. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, 9, pp. 1834–1848, (2015). https://doi.org/10.1109/TPAMI.2014.2388226
Zgraggen, A. U., Fagiano, L., Morari, M.: Automatic Retraction and Full-Cycle Operation for a Class of Airborne Wind Energy Generators. IEEE Transactions on Control Systems Technology 24(2), 594–608 (2015). https://doi.org/10.1109/TCST.2015.2452230