Nonlinear DC-link PI Control for Airborne Wind Energy Systems During Pumping Mode

  • Korbinian Schechner
  • Florian Bauer
  • Christoph M. HacklEmail author
Part of the Green Energy and Technology book series (GREEN)


During pumping mode, airborne wind energy systems are operated in two phases: A power generating reel-out phase and a power dissipating reel-in phase. The ground winch is connected via a DC-link voltage source converter to the grid. The control of its DC-link voltage is a challenging task due to the bidirectional power flow over the DC-link. Two PI controller designs are discussed: the classical PI controller with constant parameters and a nonlinear PI controller with online parameter adjustment. Based on a worst-case analysis of the physical properties, bounds on the constant parameters of the classical PI controller are derived leading to a conservative design to assure a stable operation also during the reel-in phase where the system dynamics are non-minimum phase. To overcome these limitations in the closed-loop bandwidth, a nonlinear PI controller is proposed which adjusts its parameters online. For controller design, the linearized system model is used and the controller parameters are computed via “online pole placement”. Simulation results illustrate robustness, stability and improved control performance of the proposed nonlinear PI controller in comparison to the classical PI controller.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed, M. S., Hably, A., Bacha, S.: Kite Generator System Modeling and Grid Integration. IEEE Transactions on Sustainable Energy 4(4), 968–976 (2013).
  2. 2.
    Ahmed, M., Hably, A., Bacha, S., Ovalle, A.: Kite generator system: Grid integration and validation. In: Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society (IECON 2014), pp. 2139–2145, Dallas, TX, USA, 29 Oct–1 Nov 2014.
  3. 3.
    Bauer, F., Hackl, C. M., Schechner, K.: DC-link control for airborne wind energy systems during pumping mode. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 60, Delft, The Netherlands, 15–16 June 2015. Presentation video recording available from:
  4. 4.
    Bode, H. W.: Relations Between Attenuation and Phase in Feedback Amplifier Design. Bell System Technical Journal 19(3), 421–454 (1940).
  5. 5.
    Diehl, M.: Airborne Wind Energy: Basic Concepts and Physical Foundations. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 1, pp. 3–22. Springer, Berlin Heidelberg (2013).
  6. 6.
    Ding, X., Qian, Z., Yang, S., Cui, B., Peng, F.: A direct DC-link boost voltage PID-like fuzzy control strategy in Z-source inverter. In: Proceedings of the IEEE Power Electronics Specialists Conference, pp. 405–411, Rhodes, Greece, 15–19 June 2008.
  7. 7.
    Dirscherl, C., Hackl, C. M., Schechner, K.: Pole-placement based nonlinear state-feedback control of the DC-link voltage in grid-connected voltage source power converters: A preliminary study. In: Proceedings of the 2015 IEEE Conference on Control Applications (CCA), pp. 207–214, Sydney, Australia, 21–23 Sept 2015.
  8. 8.
    Dirscherl, C., Hackl, C., Schechner, K.: Explicit model predictive control with disturbance observer for grid-connected voltage source power converters. In: Proceedings of the 2015 IEEE International Conference on Industrial Technology, pp. 999–1006, Seville, Spain, 17–19 Mar 2015.
  9. 9.
    Dirscherl, C., Hackl, C., Schechner, K.: Modellierung und Regelung von modernen Windkraftanlagen: Eine Einführung. In: Schröder, D. (ed.) Elektrische Antriebe – Regelung von Antriebssystemen, Chap. 24, pp. 1540–1614. Springer, Berlin Heidelberg (2015).
  10. 10.
    Fagiano, L., Milanese, M.: Airborne Wind Energy: an overview. In: Proceedings of the 2012 American Control Conference, pp. 3132–3143, Montréal, QC, Canada, 27–29 June 2012.
  11. 11.
    Gensior, A., Sira-Ramirez, H., Rudolph, J., Guldner, H.: On Some Nonlinear Current Controllers for Three-Phase Boost Rectifiers. IEEE Transactions on Industrial Electronics 56(2), 360–370 (2009).
  12. 12.
    Heidary Yazdi, S., Fathi, S., Gharehpetian, G., Ma‘ali Amiri, E.: Regulation of DC link voltage in VSC-HVDC to prevent DC voltage instability based on accurate dynamic model. In: Proceedings of the 4th Power Electronics, Drive Systems and Technologies Conference, pp. 394–400, Tehran, Iran, 13–14 Feb 2013.
  13. 13.
    Hinrichsen, D., Pritchard, A. J.: Mathematical Systems Theory I – Modelling, State Space Analysis, Stability and Robustness. Texts in Applied Mathematics, vol. 48. Springer-Verlag, Berlin Heidelberg (2005).
  14. 14.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).
  15. 15.
    Muslem Uddin, S. M., Akter, P., Mekhilef, S., Mubin, M., Rivera, M., Rodriguez, J.: Model predictive control of an active front end rectifier with unity displacement factor. In: Proceedings of the 2013 IEEE International Conference on Circuits and Systems, pp. 81–85, Kuala Lumpur, Malaysia, 18–19 Sept 2013.
  16. 16.
    Olalla, C., Leyva, R., El Aroudi, A., Queinnec, I.: LMI control applied to non-minimum phase switched power converters. In: Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 154–159, Cambridge, United Kingdom, 30 June–2 July 2008.
  17. 17.
    Pérez, M. A., Fuentes, R., Rodríguez, J.: Predictive control of DC-link voltage in an activefront-end rectifier. In: Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, pp. 1811–1816, Gdansk, Poland, 27–30 June 2011.
  18. 18.
    Rodriguez, H., Ortega, R., Escobar, G.: A robustly stable output feedback saturated controller for the Boost DC-to-DC converter. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3, pp. 2100–2105, Phoenix, AZ, USA, 7–10 Dec 1999.
  19. 19.
    Schröder, D.: Elektrische Antriebe - Regelung von Antriebssystemen. 3rd ed. Springer, Berlin Heidelberg (2009).
  20. 20.
    Schröder, D.: Leistungselektronische Schaltungen: Funktion, Auslegung und Anwendung. Springer-Verlag, Berlin Heidelberg (2012).
  21. 21.
    Shukla, A., Ghosh, A., Joshi, A.: State Feedback Control of Multilevel Inverters for DSTATCOM Applications. IEEE Transactions on Power Delivery 22(4), 2409–2418 (2007).
  22. 22.
    Song, E., Lynch, A., Dinavahi, V.: Experimental Validation of Nonlinear Control for a Voltage Source Converter. IEEE Transactions on Control Systems Technology 17(5), 1135–1144 (2009).
  23. 23.
    Sosa, J. M., Martínez-Rodríguez, P. R., Vázquez, G., Nava-Cruz, J. C.: Control design of a cascade boost converter based on the averaged model. In: Proceedings of the 2013 IEEE International Autumn Meeting on Power, Electronics and Computing, pp. 1–6, Morelia, Michoacán, Mexico, 13–15 Nov 2013.
  24. 24.
    Teodorescu, R., Liserre, M., Rodríguez, P.: Grid Converters for Photovoltaic and Wind Power Systems. John Wiley & Sons, Ltd., Chichester, United Kingdom (2011)Google Scholar
  25. 25.
    Thakur, R. K.: Analysis and control of a variable speed wind turbine drive system dynamics. In: Proceedings of the International Conference on Power Systems, pp. 1–5, Kharagpur, India, 27–29 Dec 2009.
  26. 26.
    Vasiladiotis, M., Rufer, A.: Dynamic Analysis and State Feedback Voltage Control of Single-Phase Active Rectifiers With DC-Link Resonant Filters. IEEE Transactions on Power Electronics 29(10), 5620–5633 (2014).
  27. 27.
    Wen-Lei, L.: Adaptive dynamic surface tracking control for DC-DC boost converter. In: Proceedings of the 31st Chinese Control Conference, pp. 750–755, Hefei, China, 25–27 July 2012Google Scholar
  28. 28.
    Yaramasu, V., Wu, B.: Predictive Control of a Three-Level Boost Converter and an NPC Inverter for High-Power PMSG-Based Medium Voltage Wind Energy Conversion Systems. IEEE Transactions on Power Electronics 29(10), 5308–5322 (2014).
  29. 29.
    Zhang, L., Nee, H.-P., Harnefors, L.: Analysis of Stability Limitations of a VSC-HVDC Link Using Power-Synchronization Control. IEEE Transactions on Power Systems 26(3), 1326–1337 (2011).
  30. 30.
    Zhang, Y., Liu, J., Ma, X., Feng, J.: Model and control of diode-assisted buck-boost voltage source inverter. In: Proceedings of the 1st International Future Energy Electronics Conference, pp. 734–739, Tainan, Taiwan, 3–6 Nov 2013.
  31. 31.
    Zhang, Y., Liu, J., Ma, X., Feng, J.: Multi-loop controller design for diode-assisted buckboost voltage source inverter. In: Proceedings of the 2014 International Power Electronics Conference, pp. 835–842, Hiroshima, Japan, 18–21 May 2014.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Korbinian Schechner
    • 1
  • Florian Bauer
    • 2
  • Christoph M. Hackl
    • 1
    Email author
  1. 1.Munich School of Engineering, Research group “Control of renewable energy systems (CRES)”Technische Universität MünchenGarchingGermany
  2. 2.Institute for Electrical Drive Systems and Power ElectronicsTechnische Universität MünchenMünchenGermany

Personalised recommendations